
Volume:3 Issue:12, 1998

J a v a D e v e l o p e r s J o u r n a l . c o m

TM

SYS-CON
PUBLICATIONS

Product Reviews
JProbe Profiler 1.1.1

by Jim Milbery pg.24
...

VoyagerPro 2.0
by Jim Milbery pg.43

Straight Talking
Let Age Approve of Youth
by AlanWilliamson pg.20

From the Industry
Managing Web
Applications

by Snehal Parikh pg.7

Cosmic Cup
The Java Scripts
by Ajit Sagar pg.44

The Grind
Application

Servers: Part 3
by Java George pg.66

IMHO
Java’s Dynamic Future

Is Happening Now
by David Norris pg.60

Which Java
Database Is

For You? pg.28

RETAILERS PLEASE DISPLAY
UNTIL FEBRUARY 28, 1999

ObjectSpace‘s 100% Pure Java Distributed
Computing Solution
ObjectSpace‘s 100% Pure Java Distributed
Computing Solution

JDJ Feature: Persistent Threads Andrei Cioroianu

for Friendly Applets How many times
have you downloaded an applet that couldn’t be stopped? 8

A Stand-alone Database Solution? Tim Callahan
How to pick from the available products in the market today 28

Case Study: Accelerating Success Lisa Chiranky
Java platform hands Global Mobility a 30% time-to-market advantage 38

DEBUGGING & TESTING TECHNIQUES:
Dynamic Java Debug Code Joe Chou
Less development overhead and better coding style 48

“Write Once, Test Anywhere” Diane Hagglund
Rapid testing is crucial to Java developers’ edge 48

Programming with Java’s I/O Streams Anil Hemrajani
Learn the basic concepts here and start programming on your own 54

Implementing a Grid Layout Manager Daniel Dee
How to create new Layout Managers for specific tasks 56

Widget Factory: JColor Claude Duguay
A color selection control that’s both comprehensive and flexible 16

london:7000 dallas:8000

tokyo:9000 perth:10000

message multicast
proxy

EDITOR’S CHOICE AWARDS WINNERS ANNOUNCED pg.42

2 • VOLUME: 3 ISSUE: 12 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

RogueWave
www.roguewave.com

3VOLUME: 3 ISSUE: 12 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

ProtoView
www.protoview.com

4 • VOLUME: 3 ISSUE: 12 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Schlumberger
www.cyberflex.slb.com

5VOLUME: 3 ISSUE: 12 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Every now and then I like to step back from the trenches and try to think like a CIO. I was a
CIO at one time, so I can actually do such a thing. And lately, when I think my CIO thoughts,
I’ve been thinking about the impact that Java has made on the Enterprise.

That impact tends to be a great deal different than it would be to a programmer. To a pro-
grammer, the game is about having a language that makes it easy – and fun – to do the task at
hand. You don’t see hordes of programmers moving to COBOL to write Internet programs – it’s
not the right tool. It’s not fun in COBOL. You pick a language that makes sense to write in.

At the high level though, what makes sense “for the company” may be in stark contrast to
what makes sense at a micro level. There the decision may not involve what language to use, but
whether it makes sense from a business standpoint to even be writing Internet programs, espe-
cially if your staff is mainly COBOL programmers.

When I examine Java from that dizzying height, I see an interesting facet. Java is not really
aimed at winning programming wars. It’s aimed at hardware. Let me tell you why. On the sur-
face, and in the mind of the individual programmer, Java is primarily a software movement. An
open software movement, one that says write once, run everywhere. The goal of Java is that any
Java bytecode should run on any Java VM, from any vendor on any operating system running
on top of any equipment. Further, Java is about removing the need for an operating system, at
least in certain cases, such as with embedded processors.

So how is that about hardware? Here’s how. Once we have a substantial base of code in Java,
Java Applications, Java Applets, JavaBeans and EJBs, the investment will be made in software. At
that point Java becomes one of the standards by which the Enterprise is run. We’ll have appli-
cation servers to house our code, they’ll talk to each other using RMI or CORBA and we’ll have
a lot of software that can run in a lot of places. So far so good?

Now we get to the $64,000 question. What do we run it on? Let’s forgo applets and applica-
tions for the moment and consider a business that has developed a set of partitioned applica-
tions. Java will run everywhere, so where do we run our business? The answer is…on the plat-
form that offers the best combination of scalability, interoperability and affordability to our
company. And that’s mainly a hardware question. I’ll grant you that you can run several oper-
ating systems on some hardware, but for the most part server hardware is so tied to the operat-
ing system that you can consider them a single unit. No one buys a SUN box to run Linux in a
production environment. You can have any operating system you want on an AS/400 – as long
as you want OS/400. Given that the business logic is unseen, there’s no need to argue over who
has the better GUI. The choice comes down to what hardware is best for the task. We can com-
pare TPC benchmarks, MFLOPs or any other standard that’s meaningful in order to determine
what’s best for our company. The hardware vendor that will win the game is the one that ulti-
mately understands how to combine processing power, affordability, service and marketing in a
way that’s cost effective to its clients and profitable to itself.

I’ll admit this still doesn’t help with the desktop, but let’s face it, the war’s over there.
Microsoft won. But it does offer alternatives when the main corporation application is devel-
oped in Java as opposed to being Microsoft Office. If a browser is all that most people need, we
might be able to change the face of the desktop in the Enterprise. Of course, the users may take
the “You can have my PC back when you pry the mouse out of my cold dead fingers” attitude,
and that’s likely to be a significant impediment to the NC concept. Even Larry Ellison has begun
to recant on the feasibility of NCs in an era of cheap PCs. Still, the possibility exists for dra-
matically decreasing costs for the desktop by providing most of the corporate applications via a
browser, or via Java applications.

So much for the CIO hat. I’ll hang that up for a while and put on my construction hard hat,
then get ready for some heavy-duty Java development. It’s fun, and anything’s better than
COBOL. Thanks for reading, and have a great holiday season.

About the Author
Sean Rhody is the editor-in-chief of Java Developer’s Journal. He is also a senior consultant with Computer
Sciences Corporation, where he specializes in application architecture – particularly distributed systems.
He can be reached by e-mail at sean@sys-con.com.

Sudden Impact

FROM THE EDITOR

Sean Rhody, Editor-in-Chief
EDITORIAL ADVISORY BOARD

Ted Coombs, Bill Dunlap, David Gee, Michel Gerin,
Arthur van Hoff, Brian Maso, John Olson, George Paolini,

Kim Polese, Sean Rhody, Rick Ross, Richard Soley,
Editor-in-Chief: Sean Rhody

Art Director: Jim Morgan
Executive Editor: Scott Davison
Managing Editor: Hollis K. Osher

Senior Editor: M’lou Pinkham
Production Editor Brian Christensen
Technical Editor: Bahadir Karuv
Visual J++ Editor: Ed Zebrowski

Visual Café Pro Editor: Alan Williamson
Product Review Editor: Jim Mathis

Games & Graphics Editor: Eric Ries
Tips & Techniques Editor: Brian Maso

WRITERS IN THIS ISSUE
Tim Callahan, Lisa Chiranky, Joe Chou,

Andrei Cioroianu, Daniel Dee, Claude Duguay,
Diane Hagglund, Anil Hemrajani, George Kassabgi,

Jim Milbery, David Norris, Snehal Parikh,
Sean Rhody, Ajit Sagar, Alan Williamson

SUBSCRIPTIONS
For subscriptions and requests for bulk orders,

please send your letters to Subscription Department

Subscription Hotline: 800 513-7111
Cover Price: $4.99/issue

Domestic: $49/yr. (12 issues) Canada/Mexico: $69/yr.
Overseas: Basic subscription price plus airmail postage

(U.S. Banks or Money Orders). Back Issues: $12 each

Publisher, President and CEO: Fuat A. Kircaali
Vice President, Production: Jim Morgan
Vice President, Marketing: Carmen Gonzalez

Advertising Assistants: Robyn Forma
Jaclyn Redmond

Accounting: Ignacio Arellano
Graphic Designers: Robin Groves

Alex Botero
Webmaster: Robert Diamond

Customer Service: Sian O’Gorman
Paula Horowitz

Online Customer Service: Mitchell Low

EDITORIAL OFFICES
SYS-CON Publications, Inc.

39 E. Central Ave., Pearl River, NY 10965
Telephone: 914 735-1900 Fax: 914 735-3922

Subscribe@SYS-CON.com
JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944) is

published monthly (12 times a year) for $49.00 by SYS-CON
Publications, Inc., 39 E. Central Ave., Pearl River, NY 10965-2306.

Application to mail at Periodicals Postage rates is pending at
Pearl River, NY 10965 and additional mailing offices.

POSTMASTER: Send address changes to:
JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,

39 E. Central Ave., Pearl River, NY 10965-2306.

© COPYRIGHT
Copyright © 1998 by SYS-CON Publications, Inc. All rights reserved. No part of this
publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopy or any information storage and retrieval system,

without written permission. For promotional reprints, contact reprint coordinator.
SYS-CON Publications, Inc. reserves the right to revise, republish and authorize

its readers to use the articles submitted for publication.

Worldwide Distribution by
Curtis Circulation Company

739 River Road, New Milford NJ 07646-3048 Phone: 201 634-7400

Java and Java-based marks are trademarks or registered trademarks
of Sun Microsystems, Inc. in the United States and other countries.

SYS-CON Publications, Inc. is independent of Sun Microsystems, Inc.
All brand and product names used on these pages are trade names,

service marks or trademarks of their respective companies.

SYS-CON
PUBLICATIONS

6 • VOLUME: 3 ISSUE: 12 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Computer
Associates

www.cai.com/ads/jasmine/dev

7VOLUME: 3 ISSUE: 12 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

The Internet has evolved into an electronic
marketplace, and businesses are increasingly
realizing its benefits and those of associated
technologies -- Web servers, browsers and Java.
The next step is to leverage Web technologies so
as to deliver mission-critical applications to
employees, supply chains and customers. The
flexibility and open standards of the Internet are
what make intranets and extranets powerful,
competitive weapons. Companies are seeing a
world in which applications can be accessed by
devices requiring nothing more than a Web
browser as an operating environment.

While this is all very intoxicating, managing
Web applications in a production environment
can be sobering. Running applications within
browsers creates challenges that must be
addressed. To realize ultimate benefits, compa-
nies must ensure secure access to Web applica-
tions, include Web clients in their overall enter-
prise system’s management initiatives and rec-
ognize a true competitive advantage by deliver-
ing “smart” Web applications.

Adaptable Web solutions are vital. Successful
companies deliver customized views of applica-
tions and data via browser based on the type of
employee, business partner or customer
attempting access. No longer is generic access
acceptable; businesses are expected to respond
to individuals in regard to their personal require-
ments. This introduces the “smart” Web applica-
tion that can detect information about the user,
device, connection type and overall runtime
environment, and adapt itself accordingly.

Many companies are coding this personaliza-
tion logic into their Web technologies (i.e., using
scripting tools and languages), but while it
works, developing and maintaining scripted per-
sonalized Web-based applications can be a night-
mare. A logical solution is to deliver an infra-
structure that manages the personalization
across all Web applications by providing ser-
vices to manage preferences at the specific user,
group and ultimate device level and allowing
applications to take advantage of these settings.
Web application developers can then focus on
coding business logic and let the underlying
infrastructure transform applications into
“smart applications.”

Many companies equate putting applications
on Web application servers with exposing their
assets to anyone with a browser. They need to
set policies so only authorized users can access
their mission-critical Web-based applications.
The challenge is twofold: delivering applications
only to authorized users, and centrally managing
policies across multiple Web deployments in a
unified manner.

Increasingly, enterprises are deploying multi-
ple Web solutions across lines of business and
departments. Each new deployment introduces
Web administrators to new or duplicated admin-
istration and management schemes, increasing
their management challenges. Even companies
that deploy the same Web solution throughout

the enterprise face the challenge of managing
replications of the same user definitions across
multiple domains.

The solution is a centrally controlled, unified
schema that defines users, groups and systems
with a common repository for the information
delivered, using Lightweight Directory Access
Protocol (LDAP), which is an emerging industry
standard for network directories. Centralized
schemas and repositories allow administrators
to define policies once, for access by multiple
tasks, which reduces their overall cost and com-
plexity of management.

Web clients also introduce new challenges to
administrators whose focus is to incorporate
them into the overall enterprise system’s man-
agement initiatives, which ensures reliability,
availability and serviceability. Traditional sys-
tem management tools monitor networks at the
specific nodes where agents are deployed, but
deploying agents at each node is cost prohibitive
and impractical. The inherent flexibility of the
Web allows users to be at their workstation or on
a laptop, and ultimately on a pervasive comput-
ing device (such as PDA or smartphone).

A practical solution doesn’t invent a new
management scheme for Web clients, but incor-
porates them into existing management systems.
The ability to generate notifications of alarms
and events at the Web client and provide aware-
ness of them with centralized system manage-
ment consoles opens up the previously closed
world of Web clients to administrators. The net
result is a demystification of activities at the Web
client by extending visibility and satisfying a
pressing concern for administrators.

Who Delivers This Promise?
These issues are as new as the Web tech-

nologies they enhance. While many Web infra-
structure vendors claim to develop, deploy and
manage Web applications, they fall short at the
enterprise level. They deploy and manage at the
domain level, leaving the issue of unified man-
agement across the enterprise.

The recently introduced eNetwork On-
Demand Server from IBM is a cross-platform
server-based solution for the advanced deploy-
ment and management of Web-based clients. It
improves Web-served computing by managing
smart Web applications containing information
about users, devices and connections -- allowing
administrators to centrally manage client appli-
cations while reducing network computing and
administrative support costs.

As more companies realize the challenges
and benefits of Web technologies, new entrants
will crowd the field, but IBM is already bringing
its years of Enterprise Class understanding to
the Web space.

About the Author
Snehal Parikh recently joined IBM as a product man-
ager responsible for enterprise Web serving. He can
be reached at sparikh@us.ibm.com.

GUEST EDITORIAL

Snehal Parikh

CALL FOR SUBSCRIPTIONS

1 800 513-7111
International Subscriptions

& Customer Service Inquiries
914 735-1900

or by fax: 914 735-3922

E-Mail: Subscribe@SYS-CON.com
http://www.SYS-CON.com

MAIL All Subscription Orders or
Customer Service Inquiries to:

EDITORIAL OFFICES
Phone: 914 735-7300

Fax: 914 735-3922

ADVERTISING & SALES OFFICE
Phone: 914 735-0300

Fax: 914 735-7302

CUSTOMER SERVICE
Phone: 914 735-1900

Fax: 914 735-3922

DESIGN & PRODUCTION
Phone: 914 735-7300

Fax: 914 735-6547

WORLDWIDE DISTRIBUTION by
Curtis Circulation Company

739 River Road, New Milford, NJ 07646-3048
Phone: 201 634-7400

DISTRIBUTED in the USA by
International Periodical Distributors

674 Via De La Valle, Suite 204
Solana Beach, CA 92075

Phone: 619 481-5928

SYS-CON
PUBLICATIONS

DEVELOPER’S

JOURNAL

SYS-CON Publications
CONTACT ESSENTIALS

SYS-CON Publications
CONTACT ESSENTIALS

PowerBuilder Developer’s Journal
http://www.PowerBuilderJournal.com

Cold Fusion Developer’s Journal
http://www.ColdFusionJournal.com

VRML Developer’s Journal
http://www.VRMLDevelopersJournal.com

Secrets of the PowerBuilder Masters
http://www.PowerBuilderBooks.com

Java Developer’s Journal
http://www.JavaDeveloperJournal.com

Managing Web Applications:
Delivering on the Internet’s Promise

Sometimes Java applets continue their
execution even after the page that contains
them is no longer visible. Run a few of them
and your computer will slow down dramat-
ically. If you continue you might need to
reboot the system to avoid a crash. So you
disconnect, reboot, reconnect and start all
over again. Isn’t it simpler to just disable
the applets?

Yes. But you’ll lose something if you do.
Java isn’t only for animations and cute nav-
igation tools (though this article contains a
lot about animation). Today everything
moves on the Internet: businesses, ser-
vices, entertaining and more. Suppose you
need information today. If not today, then
no later than tomorrow. You have three
options:
1. Use the phone and speak with an opera-

tor, who will use a Java/native applica-
tion running on a thin/fat client to query
a database. A slow human intermediary
will get the information, which will be
communicated orally. You might have to
note it on a piece of paper...

2. Connect directly to the company’s Web
site. Fill out a form and send the data to a
servlet/CGI script that will return a page
generated dynamically. If you don’t get

the requested information, you’ll have to
fill out the form again and repeat the pro-
cedure...

3. Or use a smart applet that guides you
like a wizard and helps you get the infor-
mation. You’ll have a dynamic user inter-
face, context-dependent help, friendly
messages, tooltips, “Back” and “Next”
buttons, validation of the data before it’s
sent and -- more important -- interactivity
specific to the application.

You don’t want to miss the opportunity
to use that third solution because it’s the
fastest way to get the information you
need. Okay, so don’t disable the applets,
but what do you do? As a user you can
install the latest version of your favorite
browser or you can double the RAM mem-
ory and buy a faster microprocessor. As a
developer you can write friendly applets
that can be suspended and resumed any-
time. Read this article to find out how.

Thread Persistence
In my previous article (“Persistent

Threads for Friendly Applications,” JDJ
Vol. 3, Issue 10) I defined thread persistence
and showed why and how it can be used in

stand-alone, computer-intensive applica-
tions. These applications become friendlier
because the user can interrupt them and
resume the calculation after an undefined
period of time. The state of the threads is
saved on disk using serialization API.
Thread persistence can be implemented
easily for a single independent thread, but

8 • VOLUME: 3 ISSUE: 12 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

How many times have you downloaded
an applet that couldn’t be stopped?

for Friendly Applets

JDJ FEATURE

by Andrei Cioroianu

9VOLUME: 3 ISSUE: 12 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

might become complex if you have to deal
with many concurrent threads.

There’s a big difference between applets
and stand-alone applications, however.
What does thread persistence for the
applets that run in a browser mean? There
are two answers...
1. It conserves the state of the threads,

between stop and restart, after the
applets are downloaded and initialized.

2. It’s an essential element if you want to
download applets already initialized and
customized.

The Java Tutorial (Ref. 1) gives you a
number of tips to make the applets more
friendly. One is to let users interrupt an
applet that executes an animation or some-
thing that might be disturbing (e.g., playing
sounds). There are a few ways to do that.
An old solution is to call the suspend() and
resume() methods of the thread that per-
forms the animation. But these methods
were deprecated in Java 1.2 because they
are deadlock prone. A better alternative is
to call the stop() and start() methods of the
applet (NOT of the thread). Assuming that
you want to interrupt the animation thread
in the applet’s stop() method, the question
is how to assure the persistence of the state
of the thread between stop() and start().
The users should be able to resume the ani-
mation at the point of interruption.

I have analyzed four ways to make the
applets more friendly. The first three don’t
interrupt the thread, but suspend or com-
mute it in a wait state. The fourth solution
interrupts the thread after the stop()
method of the applet is called. If the start()
method of the applet is called again, the
thread is restarted. Conserving the state of
the thread in the member variables of the
applet guarantees continuity of the anima-
tion. The fourth approach thus implements
some sort of persistence for the thread that
performs the animation, between stop()
and (re)start(), after the applet has been
downloaded and initialized.

There are two advantages. First, the inter-
ruption of the thread frees resources. Note
that once the animation is stopped, the
users are unlikely to want to resume it. The
second advantage consists of the ways to
use a second kind of persistence that allows
the deployer to customize and then serialize
the applet without writing a line of code. A
section later in this article (“The Ultimate
Use of Thread Persistence”) offers details.

BaseFriendlyApplet
The BaseFriendlyApplet class (Listing 1)

contains the common code of the next four
applets that extend it. I’ve tried to simulate
as simply as possible an applet that per-
forms animation. As the BaseFriendlyApplet
class doesn’t override the start() and stop()
methods inherited from java.applet.Applet, I
declared it abstract so that it can’t be used
in Web pages.

The init() method builds the user inter-
face, whose components are a label and two
buttons: “Suspend” and “Resume.” The label

is the equivalent of a canvas or lightweight
component of an animation applet, i.e., it
shows the current “frame.” (I won’t talk
about double buffering and sounds; these
facilities usually need synchronization, mak-
ing the thread model more complex.)

The nextFrame() method simulates “the
computing of a frame” (it increments the
subcounter variable by BIG_NUMBER
times). It increments the counter variable
and then it calls the setText() method of the
label to show “the next frame of the anima-
tion.” A true animation applet would call its
repaint() method instead of setText(). This
would generate a PaintEvent, and AWT
would call the applet’s paint() method. (If
your Java interpreter doesn’t have a fast JIT
compiler, you should delete a “0” from the
value of BIG_NUMBER.)

The actionPerformed() method is exe-
cuted within the AWT drawing and event-
handling thread. It’s called each time the
user clicks one of the applet’s buttons. If the
user presses “Suspend,” actionPerformed()
calls the stop() method of the applet. If the
user presses “Resume,” actionPerformed()
invokes the start() method.

Usually, the main methods of an applet --
init(), start(), stop() and destroy() – don’t
have to be synchronized. Typically, the
browser creates a single thread from which
it calls these methods in the right order. The
subclasses of BaseFriendlyApplet, which
override some of these methods, will have
to take into account that the start() and
stop() methods may be called from two dif-
ferent threads: the one created by the
browser for the applet, and the other creat-
ed for the AWT thread. In addition, the
destroy() method may be called, theoreti-
cally, while start() or stop() is running with-
in the AWT thread. These methods have to
be synchronized so they aren’t executed
simultaneously within two different threads.

To make testing easier, the “Suspend”
and “Resume” buttons remain enabled. A
user can click the “Suspend” button twice
and the stop() method will be completed
twice without an intermediary call of
start(). The four subclasses of Base-
FriendlyApplet (see below) will have to
deal with that.

Using suspend() and resume()
What do you think of a friendly applet

that’s deadlock prone? This is the case of
BadFriendlyApplet (Listing 2), which calls
the suspend() method of the
java.lang.Thread class.

The applet’s start() method creates a
thread when it’s called for the first time (let’s
name it the animation thread). The next calls
resume this thread in case it was suspended
by the applet’s stop() method. The threadSus-

pended flag is used to alternate the suspend()
and resume() calls. The destroy() method
stops the thread. The animation loop is exe-
cuted within the run() method.

The animation thread may be suspend-
ed during the execution of nextFrame()
after the user clicks the “Suspend” button.
For a real-world applet this means that the
animation can be suspended during the
computation of the next frame. If the brows-
er asked the applet to repaint itself, that
would be a problem even if the applet uses
double buffering.

BadFriendlyApplet seems to be stable,
but minor changes can lead to disaster.
When I added a Thread.sleep(10) call right
after thread.suspend(), AppletViewer “per-
formed an illegal operation” (this is an error
message from Windows) right before clos-
ing. This didn’t happen with other
browsers. When I made BIG_NUMBER == 0
and clicked the “Suspend” and “Resume”
buttons as fast and as often as I could, the
applet froze in Microsoft Internet Explorer.
Netscape Navigator isn’t perfect either.
When I modified the applet to allow consec-
utive suspend() or resume() calls (with
BIG_NUMBER == 0), I had to press “Resume”
x times after x clicks on “Suspend” to
resume the thread. The methods suspend()
and resume() were called from the same
thread (the AWT thread), so theoretically
the problems shouldn’t have appeared.

It isn’t worth wasting your time trying to
freeze the browsers. You just have to avoid
the use of suspend() and resume(). The
stop() method of the Thread class mustn’t
be used either, because it’s unsafe. Java 1.2
has deprecated all three of these methods.
For details see “Why JavaSoft Is Deprecat-
ing Thread.stop, Thread.suspend and
Thread.resume” (Ref. 2).

Using wait() and notifyAll()
Is there a solution to writing applets that

are both friendly and safe? Of course. In
fact, there are many. One of them is based
on the use of the wait() and notifyAll()

methods of the java.lang.Object class. This
section and the next discusses locks and
wait sets. The Java Language Specification
(Ref. 3) dedicates an entire chapter to these
subjects (“17 Threads and Locks”).

The threadSuspended flag has a new
role in the case of GoodFriendlyApplet
(Listing 3). When the user clicks the “Sus-
pend” button, this flag will be set to true in
the applet’s stop() method, which is called
from actionPerformed() (inherited from
BaseFriendlyApplet). The stop() method
will run in this case within the AWT thread.
After threadSuspended is set to true, the
applet’s run() method, which is executed
within a different thread (the animation
thread), will perform a loop that calls wait()
as long as threadSuspended is true.

The wait() method is invoked from a
synchronized block. This means that the
animation thread has already acquired (or
locked) the lock of the GoodFriendlyApplet
instance. (Every object has an associated
lock that is used for synchronization pur-
poses and that must be locked before the
calls of wait(), notify() and notifyAll().)

The wait() call adds the current thread
(i.e. the animation thread) to the wait set of
the applet, disables the current thread for
thread scheduling purposes and releases
(or unlocks) the lock. Then it waits for a
notification from another thread (i.e., the
AWT thread or the browser’s thread).
(Every object has an associated wait set
that represents the list of the threads that
have called the object’s wait() method and
that have not yet been notified.)

When the user presses the “Resume”
button, actionPerformed() will call the
applet’s start() method. This method,
which is declared synchronized, will set
threadSuspended to false and call noti-
fyAll(). The notifyAll() method will remove
the animation thread from the wait set and
reenable it for thread scheduling.

After notification, the wait() method
can’t return the control immediately. Before
return, it must reacquire the applet’s lock

and it can’t do that before the synchronized
start() method is completed.

An InterruptedException is thrown by
any of the Thread.sleep() or wait() calls
after the applet’s destroy() method invokes
the interrupt() method of the animation
thread. The exception is caught and the
break instruction will transfer the control
outside the animation loop. The animation
thread will die.

The animation is suspended when the
wait() method is called, and resumed after
wait() returns the control. The animation
can’t be interrupted during the execution of
nextFrame() unless the browser is closed
while nextFrame() computes the next
frame, but this isn’t an issue.

The pattern of GoodFriendlyApplet may
work fine for a simple applet. Some problems
might appear in the case of a complex applet
from the real world. The next section identi-
fies these problems and suggests a solution.

Using wait() and notify()
What would happen if you used notify()

instead of notifyAll()? The user won’t see any
differences in the case of GoodFriendlyAp-
plet. But if another applet has two or more
threads that call the applet’s wait() method,
the behavior of the applet may depend on
the JVM implementation. This is because
notify() chooses a single thread from wait set
to be awakened, and, as The Java Language
Specification (Ref. 4) states, “The choice is
arbitrary and at the discretion of the imple-
mentation.” The chosen thread may not be
the wanted one. Unlike notify(), the noti-
fyAll() method wakes all the threads from the
wait set. Those threads that shouldn’t be
awakened must call wait() again. This is why
GoodFriendlyApplet invokes wait() within a
loop. The threadSuspended flag indicates
whether the notification has come from
where it was expected.

If I declare run() synchronized, the AWT
thread will freeze when the user presses
“Suspend” or “Resume.” The explanation
for that is simple. If run() is synchronized,
it will keep the applet’s lock during its
entire execution. When actionPerformed()
calls start() or stop(), the AWT thread tries
to acquire the applet’s lock, which is kept
by the animation thread. The user’s clicks
on the applet’s buttons won’t have any
more effect, and blocking the AWT thread
might easily freeze the browser. The worst
thing that can happen is the system will
crash. Nobody will run the applet a second
time. You have to be careful at synchro-
nization not to transform a friendly applet
into a hostile one.

The above problems are the conse-
quences of programming errors. The brows-
er can do nothing against deadlocks. Can you
avoid mistakes? Yes. You can use different

http://www.JavaDevelopersJournal.com10 Java DEVELOPER’S Journal • VOLUME: 3 ISSUE: 12 1998

Figure 1: The “Serialize Applet into File” dialog box

11VOLUME: 3 ISSUE: 12 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

EnterpriseSoft
www.enterprisesoft.com

http://www.JavaDevelopersJournal.com• VOLUME: 3 ISSUE: 12 1998Java DEVELOPER’S Journal12

locks to correctly pair the wait() and notify()
calls. BetterFriendlyApplet (Listing 4) shows
how. Instead of its own lock, the new applet
uses the lock of an object referred by the
LOCK member variable. The code for the
start(), stop() and destroy() methods is
enclosed in synchronized blocks. The applet
uses LOCK.wait() and LOCK.notify() instead
of its own wait() and notifyAll() methods
(inherited from java.lang.Object). It is then
no longer necessary to include wait() within
a loop. However, the threadSuspended flag is
checked twice in the run() method. The first
check avoids the acquisition and release of
the lock when these operations aren’t neces-
sary (the wait() method doesn’t have to be
called). The second check of the flag is essen-
tial because its value may change right after
the first verification, before entering the syn-
chronized block.

Using the LOCK variable minimizes the
influence of the code that suspends and
resumes the animation on the code that
implements the logic of the applet (i.e., the
animation). A complex applet may now use
the synchronized keyword without coming
into conflict with the general mechanism
that makes the applet friendlier. For exam-
ple, the run() method may now become
synchronized without blocking the AWT
thread. A well-designed applet should call
wait() after repaint() (within the animation
thread), and await a notification from
paint(), which runs within the AWT thread).
This way, no frame will be lost and no half-
computed frame will be shown.

In both cases of GoodFriendlyApplet and
BetterFriendlyApplet, the notifyAll() and
notify() methods may be invoked before the
wait() from run() call if the user clicks
“Resume” immediately after “Suspend.”
Nothing bad happens here because the wait
set doesn’t contain any threads, and the
wait() method isn’t called again (threadSus-
pended is set to false right before notifica-
tion). In addition, BetterFriendlyApplet
could have used LOCK.notifyAll() instead of
LOCK.notify(), and the result would have
been the same. Finally, the private keyword
that precedes the declaration of LOCK does-
n’t prevent the incorrect use of LOCK’s
wait(), notify() and notifyAll() methods in
regard to purposes other than the imple-
mentation of the mechanism that suspends
and resumes the animation.

All three of the above solutions (Bad,
Good and Better) keep the animation
thread alive between init() and destroy().
The next applet shows how to kill this
thread between stop() and (re)start(), and
demonstrates the advantages.

Persistence between stop() and
(re)start()

BestFriendlyApplet (Listing 5) is the

applet that implements the persistence of
the animation thread. When the user clicks
the “Suspend” button, the applet’s stop()
method calls the interrupt() method of the
animation thread. The Thread.sleep() call
from run() will throw an InterruptedExcep-
tion. The break instruction will transfer the
control outside the animation loop, and the
run() method will complete its execution.
This means that the animation thread will
die, but its state will be kept in the counter
and subcounter member variables, inherit-
ed from BaseFriendlyApplet. When the user
clicks the “Resume” button, the applet’s
start() method will re-create and restart the
thread, and the animation will be resumed
from the point at which it was suspended.

The user can also press the “Resume”
button right after “Suspend,” before the
death of the thread. If the animation thread
is still alive, the start() method must not
create another thread. The correct solution
is to cancel the interruption of the thread
with the help of the intrCanceled flag. The
InterruptedException will still be thrown,
but the animation loop isn’t broken any-

more. The cancellation is canceled when
the user clicks “Suspend,” “Resume,” “Sus-
pend”...

The animation thread controls the
moment when it is killed, so that the
nextFrame() method completes its execu-
tion before the animation is suspended.

Before discussing why this solution is
the best, I’ll explain why the initialization of
the LOCK member variable had to be
changed. If I had declared and initialized
LOCK as I’ve done in BetterFriendlyApplet,
the applet’s serialization would have failed
because java.lang.Object isn’t serializable. If
I had declared LOCK transient, the object
referred by this variable would have been
ignored at serialization, and it wouldn’t
have been re-created at deserialization
(instance initializers aren’t executed at
deserialization). Hence, the start() method
would have thrown a NullPointerException.
If I had made LOCK class variable (by
declaring it static), I would have been mis-
taken because this variable would have
been shared among all of the Best-

FriendlyApplet instances that would have
run at a given moment within the same
browser. Probably nothing bad would have
happened in the case of this applet, but
annoying effects would have appeared if
LOCK.wait() and LOCK.notify() had been
called. (The thread of an applet could have
notified the thread of another applet.) The
right solution is to assign a reference of a
serializable object to the LOCK variable.
The simplest way to do this is with the use
of anonymous classes.

private final Object LOCK
= new java.io.Serializable() {};

Note that the locks and the wait sets of the
objects referred by the member variables
aren’t serialized because the fields of
java.lang.Object don’t refer them. The locks
and the wait sets are internal data structures
managed by the Java Virtual Machine. The
programmer can’t access them, but you must
be aware of their existence to understand
thread synchronization and the behavior of
the wait(), notify() and notifyAll() methods.

The pattern of BestFriendlyApplet offers
two important advantages. First, the thread
created in the start() method is interrupted
after the call of the stop() method. Hence,
the resources allocated to the animation
thread are released. Again, it is unlikely that
the users will resume the animation after
they stop it. (But they can resume it, if they
want.) The second advantage is that the
applet is serializable after the stop()
method is called. The other applets (Bad,
Good and Better) aren’t serializable
because the java.lang.Thread class isn’t.
The following section gives more details
about the second advantage.

The Ultimate Use of Thread
Persistence

Java 1.1 has extended the <APPLET> tag,
so that instead of the CODE attribute, you
can use the OBJECT attribute, whose value
must be the name of a file that contains a
serialized representation of an applet. After
it downloads this file, the browser will dese-
rialize the applet and call its start()
method. (The init() method isn’t invoked.)
This allows the deployer to offer many cus-
tomized versions of the same applet with-
out writing a line of code. Such a deploy-
ment might be useful for the complex
applets, whose customizations need some-
thing more than the parameters of the
<APPLET> tag. You have to be aware that
Netscape Navigator and Microsoft Internet
Explorer don’t yet recognize the OBJECT
attribute. Hence, to use this feature of Java
1.1, you will have to use Sun HotJava or
AppletViewer. (You may use any Java 1.1-
compatible browser, including Explorer and

It’s unlikely that users

will resume animation

after they stop it, but

they can, if they want.

13VOLUME: 3 ISSUE: 12 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Pervasive
www.pervasive.com/sdk-jd

14 Java DEVELOPER’S Journal • VOLUME: 3 ISSUE: 12 1998 http://www.JavaDevelopersJournal.com

Navigator, to run the applets presented in
this article as long as you only use the
attributes of the <APPLET> tag from Java
1.0.)

How does the OBJECT attribute work?
An example is the best answer for this ques-
tion.
1. First, you must create an .HTML file

(e.g., CodeAttrib.html) that uses the
<APPLET> tag with the CODE attribute.

<applet code = “BestFriendlyApplet.class”
width=200 height=200> </applet>

2. Next, run “AppletViewer (e.g., CodeAt
trib.html.)

3. Let the applet run a while, then select
the “Stop” item from the Applet menu of
AppletViewer. AppletViewer will then
call the applet’s stop() method. You’ll
have to wait until the animation thread
is interrupted.

4. Select the “Save...” item from the Applet
menu. AppletViewer will show a dialog
box, whose title is “Serialize Applet Into
File” (see Figure 1).

5. Type, for example, “aBestFriendlyAp-
plet.ser” (without quotes) within the
“File name” text field, and click the
“Save” button. The dialog box will be
closed, and AppletViewer will serialize
the applet in aBestFriendlyApplet.ser
file.

6. Close AppletViewer.
7. Create a second .HTML file (e.g.,

ObjectAttrib.html) that uses the
<APPLET> tag with the OBJECT attribute.

<applet object = “aBestFriendlyApplet.ser”
width=200 height=200> </applet>

8. Finally, run “AppletViewer
ObjectAttrib.html” or download
ObjectAttrib.html in the HotJava brows-
er. AppletViewer/HotJava will deserialize
the applet and call its start() method.
(The init() method isn’t invoked.) The
animation will be resumed.

One small problem is that if you select
the “Save...” item and click the “Save” but-
ton (steps 4 and 5) immediately after “Stop”
(step 3), the animation thread may still be
alive. If so, its associated Thread object is
referred by the thread member variable of
the applet. AppletViewer will print an error
message to the console because the
java.lang.Thread class doesn’t implement
java.io.Serializable.

in appletSave:
java.io.NotSerializableException:
java.lang.Thread

Wait a little and then try again to serial-

ize the applet, using the “Save...” item.
(Repeat steps 4 and 5.) This inconvenience
is minor because the deployers serialize
the applet before they insert it into public
Web pages. It’s incorrect to declare the
thread variable transient to avoid the error
message because this would allow the seri-
alization of the applet during the comput-
ing of the next frame. Remember, the applet
encapsulates the state of the animation
thread. You have to let this thread arrange
its own death and store null in the thread
member variable.

This is an interesting trick. The applet
can’t be serialized before the execution of
“thread = null;” because the Thread class
isn’t serializable. Nevertheless, the applet
can be serialized after the thread variable is
set to null (in the run() method, before
break) because the Serialization API does-
n’t look at the type of the member vari-
ables, but at their values.

The applet’s stop() method can’t wait
for the death of the animation thread. If it
did this, the user wouldn’t be able to cancel

the suspension of the animation because
the AWT thread and thus the “Resume” but-
ton would be blocked during the wait peri-
od of stop().

Applet Persistence in the
Real World

Imagine the following scenario. You are
developing an applet that implements a
neural network, and you want to show vis-
itors to your site how the results have
improved during training. From time to
time you stop the applet and serialize it.
Then you restart the applet and training
continues. After a while, the network reach-
es its optimum, and then will begin to forget
what it has learned. What you have to do is
insert the serialized variants of the applet
that were saved before and right after the
optimum was reached into a Web page.
This technique can be used for any kind of
applet that shows the evolution in time of a
phenomenon, and you won’t have to write
I/O code or develop multiple versions of
the applet.

The above example is a specialized one.

The pattern of BestFriendlyApplet is very
general and has a double role: to make the
applets both friendly and serializable. The
latter might not interest you right now,
however, because Navigator and Internet
Explorer don’t yet recognize the OBJECT
attribute of the <APPLET> tag. There is one
more disadvantage: the .ser files increase
the download time. You can use the tran-
sient keyword to control what is serialized,
but the objects referred by the member
variables that your applet inherits from
java.applet.Applet will be serialized. Among
these objects are the AWT components of
the applet.

In addition to simplifying customization,
there is one more advantage: the init()
method isn’t called anymore, so a fast ini-
tialization comes after the slow download.

You are the one who decides what’s best
for your applets. Even if you don’t use seri-
alization, you can still make the applets
more friendly without performance costs
and without limiting the number of target
browsers.

Summary
This article has answered many ques-

tions: What could applet persistence mean
for the real world? How can we implement
persistence for threads and applets? How
do we write thread-safe friendly applets?
How can we pair the wait() and notify()
calls? What’s the difference between noti-
fy() and notifyAll()? Why not use suspend()
and resume()? But this article is not just a
list of questions and answers. Starting with
a nonserializable deadlock-prone applet,
I’ve identified the problems, found the solu-
tions and designed a pattern for serializable
friendly applets.

In my next article I’ll discuss the persis-
tence of the Swing components.

References
1. Mary Campione and Kathy Walrath, The

Java Tutorial, Addison Wesley.
java.sun.com/docs/books/tutorial/

2. Sun Microsystems, “Why JavaSoft Is Depre-
cating Thread.stop, Thread.suspend and
Thread.resume.” java.sun.com/prod-
ucts/jdk/1.2/docs/guide/misc/thread-
PrimitiveDeprecation.html

3. James Gosling, Bill Joy and Guy Steele,
The Java Language Specification,
Addison Wesley.
java.sun.com/docs/books/jls/

About the Author
Andrei Cioroianu, an independent Java developer,
has a BS in mathematics/computer science and an
MS in artificial intelligence. His focus is on 3D
graphics (Java 3D), software components
(JavaBeans) and user interface (AWT, JFC). You
can reach Andrei at andcio@hotmail.com.

“You are the one

who decides

what’s best for

your applets.”

15VOLUME: 3 ISSUE: 12 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Intuitive
Systems, Inc.

www.optimizeit.com

Java DEVELOPER’S Journal

This month we have a colorful widget
for you. While the JFC provides a pretty
nice color picker, it doesn’t seem to go the
extra mile that users of imaging software
have come to expect. Once exposed to that
software, some users have become pretty
sophisticated and you have to use a well-
designed color selection control – should
you need one in your application – to make
a good impression on them.

This column explores a widget called
JColor that provides six views on the color
spectrum in a single, easy-to-use interface.
Figure 1 shows the JColor control in action,
with the Blue view activated. The six views
correspond directly with the red, green and
blue of the RGB model and the hue,
saturation and brightness of the HSB
model.

The RGB and HSB color models are
based on three dimensions, some-
thing often difficult to visualize on a
flat display. Our approach uses the
two dimensions of a rectangle and an
additional dimension in a vertical gra-
dient.

The view selected by the radio
controls of our interface determine
which dimension is displayed in the
vertical gradient. The remaining two
dimensions are represented by the
two axes of the rectangle. You can
pick colors graphically in any model,
or type the RGB or HSB values directly in
the fields.

Image Producers
Both the ColorSliderImage and ColorMa-

trixImage classes are implementations of
the ImageProducer interface. An image pro-
ducer implements a minimum interface that
allows it to dynamically produce arbitrary
images that can be read by an ImageCon-
sumer and displayed by an ImageObserver.

The JFC offers a simple abstraction to
the ImageProducer class called SyntheticIm-
age, which provides a constructor that
needs to know the width and height of the
image and a computeRow method to actu-

ally produce the pixels one row at a time.
This is very convenient, since little coding
is actually required to produce an image.

We implement two image producers.
Both of them calculate a color gradient ver-
tically and one of them calculates an addi-
tional horizontal gradient. In both cases, we
use a set of constants that tell us which of
the six view modes we’re in. The constants,
presented in Listing 1, are RED, GREEN,
BLUE, HUE, SATURATION and BRIGHTNESS.
The images are produced dynamically
through the interface.

Listing 2 shows the source code for Col-
orSliderImage, which produces a vertical
gradient based on the current style. For the

RED, GREEN and BLUE styles we create a
gradient between zero and the specified
color, representing a value between zero
and 255. The HUE, SATURATION and
BRIGHTNESS values are determined by
using the static HSB to RGB method in the
Java Color class.

Listing 3 shows the code for ColorMa-
trixImage, which produces a vertical and
horizontal gradient covering the full two-
dimensional range specified by the current
style. Notice that the ColorSliderImage
actually represents the selected style, so
ColorMatrixImage produces the remaining
two dimensions. If, for example, the RED
style is selected, the ColorMatrixImage will

actually represent the green and blue color
components.

Color Selectors
Two widgets need to be implemented to

support interactive color selection. The
JColorSlider and JColorMatrix controls use
the image producers we developed to dis-
play the range of values available for each
selection. Two visual cues are employed to
show the user the current selection –
arrows on the outside of the color area and
a crosshair surrounding the current posi-
tion.

The arrows are drawn as triangular poly-
gons on the border of the control. The JCol-
orSlider control provides arrows on the left
and right of the current position. The JCol-
orMatrix control draws left and right
arrows, along with top and bottom arrows.
To make all this easy to follow, we provide

separate methods for each of the
arrow drawing routines.

The crosshair is designed to han-
dle the unpredictable underlying
color spectrum. If the underlying
color is dark, a black crosshair
would be ineffective. If we make the
crosshair white, the same problem
occurs when the underlying color is
too bright. The solution is to use a
combination of black and white with
a black central crosshair and a white
edge on each side of the black lines.

Listing 4 shows the AbstractCol-
orSelector class from which both
JColorSlider and JColorMatrix inher-
it. It encapsulates basic code for

handling common member variables along
with action listener registration and event
handling. Empty MouseListener and
KeyListener methods are also provided;
since we’re primarily interested in the
mousePressed and keyPressed events, we
can ignore the others.

Listing 5 shows the code for JCol-
orSlider. We set the style and register to
receive mouse, key and focus events.
Besides setting the style member variable,
the setStyle method sets the image to null
before repainting, forcing a new image to
be generated by the ColorSliderImage pro-
ducer. The paintComponent method
draws the image, arrows and crosshair,

Figure 1: JColor in the Blue view

16 Java DEVELOPER’S Journal • VOLUME: 3 ISSUE: 12 1998 http://www.JavaDevelopersJournal.com

JColor
A widget that satisfies advanced

and novice software needs
by Claude Duguay

17VOLUME: 3 ISSUE: 12 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

ObjectShare
www.objectshare.com

and the focus rectangle when appropriate.
The setYValue and getYValue methods

handle setting and getting the vertical posi-
tion. Internally, we calculate the actual pixel
location. From the outside these values are
expected to be between zero and 255. We
also set the preferred size so that window
packing will create ideal dimensions for the
control, with a pixel for each discrete posi-
tion. The object can be scaled as needed,
however, so this is considered a guideline.

Listing 6 shows the code for JColorMa-
trix, which extends the JColorSlider con-
trol. All the vertical handling is identical, so
we extend the JColorSlider behavior to han-
dle horizontal positions. We add the setX-
Value and getXValue methods along with
top and bottom arrows, and modify the
code for paintMethod and drawCrosshair
to accommodate the additional dimension.
The getPreferredSize method returns sym-
metrical, ideal dimensions for a square area
with a single pixel for each discrete unit.
Note: If you make it smaller, you’ll lose some
resolution, and making it larger repeats pix-
els, so the preferred size is highly recom-
mended.

The JColor Control
The main JColor control is implemented

as an extension to JPanel for flexibility.
Using this strategy allows us to place it in
any component or window. This is the most
complex class in this collection, primarily
because the JColor panel handles all the
button, field and selector events, and coor-
dinates the six views provided to display
more than 16 million (24 bit) colors in the
spectrum.

Figure 2 shows how the internal panels
and components are arranged. The JColor
constructor creates each of the instances
and stores a reference to the buttons, fields
and color selectors in member variables.

Let’s quickly review behavior in the
JColor widget. If the user selects one of the
radio buttons, the matrix and slider view

images are updated to reflect the color
selection model. When the user types in a
value directly in one of the fields, we clip
values within the zero to 255 range. If the
field being edited is in the RGB range, we
automatically switch to one of those views
if one isn’t already active. To be consistent,
we pick the view associated with the cur-
rent field. The same is true of entering val-
ues in the HSB fields if one of the views isn’t
active already. A value changed in the
matrix or slider component is immediately
reflected in the field values and the swatch

panel, both of which keep in mind which
model is active at the time.

Most of the work is done when action
events are triggered. Listing 7 shows the
code for the actionPerformed method, with
most of the field handlers omitted. The red
field handler is sufficiently indicative of
how the others work to get the idea.

The radio buttons are handled first.
In each case the style value changes
and a condition that checks for
RadioButton events follows immediate-
ly to switch the slider and matrix styles
dynamically. No matter what the source
of the event, we call setColorText to
update the field values and repaint the

swatch to reflect the current color.
Listing 7 shows the condition that han-

dles the red field events. We first check to
see if one of the RGB radio selections is
active. If none of them are, we switch views
by setting the style value and updating the
matrix and slider styles. In either case, we
check to see which context is active and,
then set the appropriate x or y value in the
slider or matrix controls. The same mecha-
nism is applied to each of the fields in a set
of subsequent conditions.

Listing 8 shows code for JColorTest that
demonstrates usage. We create a JFrame
and watch for the windowClosing event.
The code puts a new JColor panel into the
center and sets an initial color with the
JColor.setColor method. We fetch the color
with getColor on exit. Figure 3 shows the
JColorTest running. Notice that the JColor-
Matrix control has the focus and appears
slightly lifted from the page.

Summary
The JColor widget provides developers

with a color selection control that’s both
comprehensive and flexible. Designed to
handle a wide variety of needs, it presents
itself as an alternative to the JColorPicker
control provided with the JFC. More impor-
tant, it provides a sophisticated design that
satisfies advanced imaging software needs
as easily as the needs of a novice user.

About the Author
Claude Duguay has been programming since
1980. In 1988 he founded LogiCraft Corporation,
and currently leads the development team at Atrieva
Corp. You can contact him with questions and com-
ments at claude@atrieva.com.

Figure 2: JColor nested panel layout Figure 3: JColor in the saturation view

claude@atrieva.com

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

“The JColor widget

provides developers

with a color selection

control that’s

both comprehensive

and flexible”

http://www.JavaDevelopersJournal.com18 Java DEVELOPER’S Journal • VOLUME: 3 ISSUE: 12 1998

19VOLUME: 3 ISSUE: 12 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

4th Pass
www.4thpass.com

20 • VOLUME: 3 ISSUE: 12 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

This month I’m going to go down the
route of employment, because here at N-
ARY, we’re going through the painful
process of recruiting. As usual, I’m going to
analogize my findings with a human per-
sonality trait – this month I’m going to go
for loyalty. But I’ll come back to that in a
moment.

We’re expanding, and that brings more
work with it. We need more bodies. Not a
huge problem, one would have thought, to
go and hire a couple of Java developers.
Boy, were we mistaken! We never realized
the minefield we’d be entering. Since we’re
based in the UK, we began our search on
home soil.

First Things First
The first thing we prepared was a job

specification. A good place to start. It was
quickly established that there was a junior
role that would in time develop into a more
senior position. So we were looking for
someone just out of university, or not long
in industry. Due to the budget we had allo-
cated for this new person and the nature of
the work, a graduate fitted the bill perfect-
ly. What we did insist on was someone with
Java experience. Whether it was coding at
university or during spare time, we needed
someone who could code from day one, as
opposed to our training them. Considering
the claims from Sun concerning the number
of Java developers in existence, we didn’t
think we were asking too much.

We began our search by first going to the
place where graduates are supposed to
hang out: universities. We e-mailed all the
major universities in our country and got
nowhere fast. Why? Wrong time of the year.
Our search began around August of last
year, but I was sure some graduates must
still be lurking around after the exams. If
they were, none presented themselves.

Around this time, I began to read many
articles about the skills shortage the IT
industry was experiencing. In fact, there
was even a move in this country to train
prisoners to deal with the Year 2000 prob-
lem. I’m not quite sure what happened to
that scheme, but all seems to have gone
quiet on that front. Somebody in our gov-

ernment must have thought it a good idea
at the time. Bless.

While this shortage was being reported,
another irony was unfolding. Everywhere
you looked, another major corporation was
laying off staff. Not just one or two people,
but thousands. A quick trawl through c-
net.com showed the full horror of the situa-
tion. According to the news reports found
at C-NET, we have the likes of Nortel laying
off 3,500 employees; Netscape, 300; SGI,
1,000 – and even our Japanese friends, with
Hitachi laying off 650. These are just the big
household names; I’m not even listing all
the smaller companies that are getting rid
of 20 to 50 people. It looks somewhat bleak.

But I have to ask: When so many are join-
ing the job market, how come we’re still
experiencing a shortage? There are a num-
ber of possible reasons. First of all, the job
cuts may be of nonskilled workers. This is
possible, but I know some people that have
left the ranks of Nortel, for example, and
they are far from nonskilled. So let’s assume
it’s not all administrative staff that’s been
removed. Besides, administrative people
traditionally don’t cost that much when
compared to a highly trained developer. If
the job cuts are made to save money, then
removing a team of developers as opposed
to a number of secretaries will save more.
When the accountants need to make cuts,
they look at the higher end salaries and
begin with them, then generally work up.
Stands to reason – getting rid of one person
as opposed to the equivalent of three will
keep morale higher and not look as bad to
the press.

The assumption is that there are people
now looking for jobs. Of course, if there is a
skills shortage, but companies are making
major job cuts, it begs the question of
which companies are looking to hire. But
let’s not deal with that one just yet.

Okay now. On one hand we have the
claim that says we’re suffering a skills
shortage; on the other we’re making signifi-
cant job cuts. Maybe the two are related.
Maybe the reason there are so many job
cuts is because the skills the company is
looking for aren’t actually in-house. This
would make sense to some degree. But

again, a question about retraining the said
personnel raises its ugly head. Surely that’s
got to be cheaper than going through the
whole firing and hiring loop.

Reality Check
But there’s another possible reason

that’s a bit more controversial. What if
there are enough bodies and they claim to
have the skills, but when these people are
hired companies find they’ve been duped?
They discover the level of expertise isn’t
quite what they expected. Looking at the
Java universe we can see this is very evi-
dent. A number of people claim to know
Java, but when you look closely at their CVs
you discover, for example, an HTML devel-
oper with no formal programming skills.
Call me cynical, but a programmer that
does not him/her make.

In our quest for Java developers we’ve
seen many of these CVs. Most are worth-
less. We need a developer, a software engi-
neer. We don’t need another HTML body.
We need someone who knows algorithms,
someone who knows one end of a class
from another. Sadly, the self-taught
brigades aren’t up to scratch.

But why is there a skills shortage? Why
are so many people not trained for the jobs

Let Age Approve of Youth

STRAIGHT TALKING

Help Wanted: Java Developers Only
by Alan Williamson

Another month has rolled by and here we are,
entering a brand new year. Whether it’s just me
getting older or the earth speeding up, time seems
to be flying past at a tremendous pace. This col-
umn, for example – would you believe? – is now
celebrating its six-month anniversary. That sure
came around quickly. Before you know it, people
like us will be known as the veterans of the Java
industry, considered the early adopters and forg-
ing on ahead with the new technology. Exciting
when you think about it.

The column has taken us many places; we’ve
explored many different issues, thrashed out some
interesting ideas and even had some fun along the
way. I hope you’ve enjoyed reading the beast as
much as I’ve enjoyed composing it. Let’s hope the
next six months are as kind to us. Let me thank
all of you who’ve taken the time to e-mail me.
You know who you are! It’s much appreciated and
I enjoy reading and answering your e-mails, so
please, keep them coming.

And now, on with this month’s look at the
Java universe.

21VOLUME: 3 ISSUE: 12 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

1/2 Ad

ParaSoft
www.parasoft.com

22 • VOLUME: 3 ISSUE: 12 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

the industry is looking to fill? Is it because
companies have taken on too much work?
Have they oversold themselves? Who
knows? A general slowdown of develop-
ment wouldn’t go amiss, and regular read-
ers of this column know that I’m all for a
general slowdown of Java to allow the rest
of the world to catch up.

Where Is Everybody?
Taking this into account, our search for

souls was getting nowhere fast. We then
looked at other available resources – the
recruitment agencies. This turned out to be
fun. At this point I’d like to curse the person
or persons who felt it was a good idea to
name the HTML scripting language
“JavaScript.” Do they realize the amount of
confusion and heartache this has caused
the industry?

We sent our job specification to the
agencies and instantly our inbox began to
fill with potential candidates. We were
excited. At last, potential N-ARY employees
were coming in! Our initial excitement was
soon to dampen, however, as we read
JavaScript over and over again. These
aren’t Java developers! What’s going on
here?

We phoned some of the agencies. We
said, “Thanks, but no thanks. You haven’t
sent the right sort of candidates.”

“But we did,” came the answer. “You
mean Java has nothing to do with
JavaScript?”

A learning curve is still to be taken by
some agencies, it would appear. Which is
frightening when you think about it. Com-
panies are trusting such agencies to be
their recruitment agents. If anybody should
know the difference, they should!

Once the difference was pointed out, the
inbox didn’t get quite the same amount of
attention. And the CVs that did come
through were not that great but still felt the
need to ask for huge amounts of money,
which I found highly amusing.

Don’t get me wrong. We have no prob-
lem paying for good people. As the old say-
ing goes, “Pay peanuts? Get monkeys.” But
if we have to pay for the poorly skilled, it
staggers the imagination to think what high-
ly skilled people want.

So what seemed to be an innocent
enough task – to hire a couple of bodies –
was turning out to be as difficult as the
quest for the Holy Grail. Exasperated, we
decided to look for developers beyond the
bounds of our own country. We’ve used the
services of PSI Limited in India. This large
Indian development house, run by one
Mukesh Patel, did us proud with a number
of Java projects so our faith in overseas
developers was high.

We quickly updated our job specifica-

tion to include free accommodation, and
sent it off to various universities around the
globe. The beauty of the Internet meant this
wasn’t that big a task. Well, what a differ-
ence that made!

Not only did we get CVs in, but they
were of a very high standard, complete with
examples of work and references. They
liked the salary, they liked where they
would be working and they were extremely
enthusiastic. The upshot? We hired a recent
doctorate from Thailand who majored in
Java Servlets and JDBC, and we’re still
choosing another from a large pool of CVs.

I think the whole thing boils down to
money. There is always a discussion of how
the Asian countries are polluting the indus-
try by driving down salaries. I think this is a
good thing, not a bad thing. I personally feel
we are sometimes overpaid, and as a by-
product some of us get complacent. We
stop trying. We know we’re in demand, and
if we don’t get on with management or if we
do something wrong, we know we’ll be
snapped up again, probably with a pay rise.

Our industry suffers from a high staff
turnover rate. Sometimes I feel I have the
kiss of death with regard to people. In the
last year around 70% of all the people I have
built up a rapport with have left their com-
panies and moved on. It’s funny on the one
hand but extremely frustrating on the
other. Surely this continual moving about
can’t be doing the industry as a whole any
good. Something has to give.

Back to Loyalty
Back to our trait of the month, loyalty.

Are people no longer loyal to their compa-
nies? When the going gets tough, it’s too
easy to move. In our world a company’s
greatest asset is its employees. We develop
virtual products, software, which has to be
maintained and further enhanced. Changing
the team all the time isn’t healthy, for the
company or the end client. I don’t think it’s
a case of the company needing to try hard-
er to keep their staff. After all, there’s a limit
to the salary you can pay one person.

So I welcome this new influx of people
that are keen, enthusiastic and above all
looking to work for the love of it as opposed
to the dollar. That is, of course, until they
discover how the world operates and we
lose them, and have to start this whole
process over again!

About the Author
Alan Williamson is CEO of N-ARY Limited, a UK-
based Java software company specializing solely in
JDBC and Servlets. He recently completed his second
book, which focuses on Java Servlets. Alan can be
reached at alan@n-ary.com (www.n-ary.com).

Object
Matter

www.objectmatter.com

alan@n-ary.com

23VOLUME: 3 ISSUE: 12 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

InstallShield
www.installshield.com

24 • VOLUME: 3 ISSUE: 12Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

The Java language
removes several prob-
lem areas for develop-
ers, compared to C++
development, by its

elimination of memory
allocation and pointer

management. While this gen-
erally makes Java programs more stable
than their C++ brethren, it can often lead
to the misconception that Java programs
don’t need to be optimized or profiled.
Nothing could be further from the truth,
especially when you consider that Java is
being used to build enterprise-class
applications, which require high perfor-
mance. KL Group has built a strong repu-
tation for supplying Java components to
many of the leading software vendors,
and they have extended their Java pres-
ence with JProbe Profiler.

Product Installation
KL Group delivers the software directly

from their Web site for download, as well
as offers the software on CD-ROM. JProbe
is available for Windows 95/NT and installs
with an InstallShield executable. I was able
to get the software installed in a matter of
minutes, and the complete installation
required only about 14 MB of disk space.
JProbe requires the JDK 1.1.5 version to
run, but you can profile any application
that was written for either the JDK 1.0 or
1.1 series virtual machine. If you have
already installed the JDK 1.1.5 virtual
machine, you’ll still need to install the ver-
sion that comes with JProbe, since it’s a
specialized version of the standard 1.1.5
JDK virtual machine. The runtime envi-
ronment for JProbe allows you to set
CLASSPATH definitions for individual pro-
grams as needed, so it’s not necessary to
modify your Java development environ-
ment to get started.

Uncovering Performance
Bottlenecks

Java as both a platform and a lan-

guage offers a number of advantages in
terms of portability and standardization.
Programmers across the globe are
migrating to Java from a variety of other
languages and platforms. For many of us
the move to Java may also be our first
real, hard-core experience with object-
oriented programming. As a result, the
programs you write may have hidden
performance bottlenecks that slow down
processing and eat memory. KL Group’s
JProbe is designed to uncover these hid-
den performance anomalies including
such common problems as excessive
object creation, method calling and
thread creation, and inefficient memory
usage. The Profiler collects timing infor-
mation and memory data as you run
your Java programs, and JProbe sup-
ports most of the leading Java develop-
ment environments. I used Oracle’s JDe-
veloper product to create a few sample
Java programs for testing. Once you’ve
compiled your code in your favorite
development tool, start the Profiler and
select the “Run” menu. I was quickly able
to search for possible performance prob-
lems in my code by using the “Memory
Usage Monitor,” as shown in Figure 1.

The memory monitor charts memory
as it’s used by the program and is gener-
ally the first place you start when you
use the Profiler. KL Group includes a
number of sample program runs with
JProbe, and I’d advise you to start by
using these examples with the Profiler’s
online help to get an overview of the Pro-
filer’s capabilities. You have a choice of
running a program through to conclu-
sion as one long run, or you can divide
the performance data into specific
chunks by using “snapshots.” I found the
snapshots invaluable as a tool for com-
paring the first pass of a program with
subsequent executions through the
same set of code. They were especially
helpful tracking down problems with
event-driven code. I was able to use the
memory monitor to drill down into

details of my code quickly and easily.
The snapshots can be used to track call-
ing relationships, as shown in Figure 2.

You can see in the diagram that the
profiler can show a hierarchical display
of method calls, which can help you
expose the most expensive methods. If
you need to, you can click down to the
source code directly from the diagram,
and the graphical interface uses colors to
highlight the more expensive method
calls. If you choose to view the source
within the Profiler, you can see how
much resource is used by each routine in
a panel next to the source window. The
Profiler makes it easy to shift between
multiple snapshots, and you can save the
entire set of snapshots and program defi-
nitions for reuse at a later time. I was
impressed with how quickly I was able to
find problems in my own programs, but
I’ll take a pass on telling you just how bad
my coding actually was before JProbe got
ahold of it!

Performance and Usability
KL Group claims to have improved the

performance of JProbe Profiler by a factor
of 10 with this release. I didn’t test any
large or long-running programs with the
Profiler, but JProbe ran briskly enough on
my development platform. I couldn’t see
any easy way to test programs out in
batch, although I was able to save test ses-

PRODUCT REVIEW

JProbe Profiler 1.1.1
by KL Group Inc.

A profiling and analysis tool for Java

by Jim Milbery

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
JProbe Profiler 1.1.1
KL Group Inc.
260 King Street East
Toronto, Ontario, Canada M5A 1K3
Phone: 800 663-4723 Fax: 416 594-1919
Web: www.klg.com
E-mail: direct@klg.com
Requirements: Microsoft NT 4.0 or Windows 95 on
a Pentium-class processor. At least 32 MB RAM.
Approximately 40 MB free disk space. Since the
necessary JDK environment is included internally
with the product, there is no need to install the
Java Development Kit.
Price: $499/developer

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

25VOLUME: 3 ISSUE: 12 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

KL Group Inc.
www.klg.com

sions for later analysis, and you can save
programs for reexecution as well. The
online documentation with JProbe Profiler
is adequate for using the product, but it’s
a little weak in the area of interpretation.
The help files have a tendency to expect
that many of the performance numbers
will be self-explanatory, and novice pro-
grammers may find that it’ll take some
practice to get a handle on interpreting
results. I’d encourage you to make use of
the tutorial and sample files before tack-
ling any of your own code.

Final Thoughts
There are several products on the mar-

ket that purport to provide performance
profiling for Java. However, when I quickly
searched the various Java newsgroups for
user opinions, I found that many program-
mers had good things to say about JProbe
Profiler. One programmer in particular
claimed that JProbe had helped him to get
a hundred-fold improvement in perfor-
mance. My informal Web survey seemed
to indicate that JProbe is clearly the
leader in Java profilers, and from my brief

experience with the product, I’d be
inclined to agree.

About the Author
Jim Milbery is an independent software consultant
based in Easton, Pennsylvania. He has over 15
years of experience in application development
and relational databases. Jim can be reached at
jmilbery@milbery.com or via his Web site at
www.milbery.com.

Figure 2: Track calling relationships

www.milbery.com

Figure 1: Memory usage monitor

26 • VOLUME: 3 ISSUE: 12Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

ADVERTISER INDEXADVERTISER INDEX
4th Pass 19
www.4thpass.com 206 329-7460

ColdFusion Developer’s Journal 42
www.sys-con.com 800 513-7111

Computer Associates 6
www.cai.com/ads/jasmine/dev 888 7-JASMINE

Distinct 27
www.distinct.com 408 366-8933

EnterpriseSoft 11
www.enterprisesoft.com 415 677-7979

Inprise 61
www.inprise.com 831 431-1000

InstallShield 23
www.installshield.com 800 269-5216

Intuitive Systems, Inc. 15
www.optimizeit.com 408 245-8540

JHL Computer Consultants 37
www.jhlcomp.com 954 845-9967

Jinfonet 51
www.jinfonet.com 301 983-5865

KL Group Inc. 25 & 68
www.klg.com 800 663-4723

Advertiser Page
LPC Consulting 50
www.ilap.com/lpc 416 510-1660

Microsoft 59
www.msdn.microsoft.com/visualj 800 509-8344

MindQ 58
www.mindq.com 800 646-3008

Object Management Group 63
www.omg.org 508 820-4300

Object Matter 22
www.objectmatter.com 305 718-9101

ObjectShare 17
www.objectshare.com 800 973-4777

ObjectSpace 67
www.objectspace.com 972 726-4100

Oracle 33
www.oracle.com/info/27 800 633-0539

ParaSoft 21
www.parasoft.com 888 305-0041

Pervasive 13
www.pervasive.com/sdk-jd 800 884-6235

PowerBuilder Developer’s Journal 42
www.sys-con.com 800 513-7111

ProtoView 3
www.protoview.com 800 231-8588

Rogue Wave 2
www.roguewave.com 303 473-9118

Sales Vision 41
www.salesvision.com 704 567-9111

Schlumberger 4
www.cyberflex.slb.com 800 825-1155

Slangsoft 35
www.slangsoft.com 972 375-18127

Snowbound Software 47
www.snowbnd.com 617 630-9495

JDJ Online 52&53
www.sys-con.com 800 513-7111

SYS-CON Radio 65
www.sys-con.com 800 513-7111

The Object People 45
www.objectpeople.com 919 852-2200

Wall Street Wise Software 50
www.wallstreetwise.com/spell.htm 212 342-7185

SunTest 57
www.suntest.com 415 336-2005

Advertiser Page Advertiser Page

27VOLUME: 3 ISSUE: 12 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Distinct
www.distinct.com

28 • VOLUME: 3 ISSUE: 12 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

When you see the words Java database application, you probably
start thinking about enterprise-level solutions with multitier archi-
tectures and distributed deployment. But Java is a great general-pur-
pose, object-oriented language and thus a good choice for develop-
ing smaller scale, stand-alone database aplications as well. You can
enjoy the benefits of programming in Java regardless of an applica-
tion’s scale or deployment.

I define a stand-alone database application as one that is installed
and maintained primarily by the end user. Deployment may be on an
isolated computer or small network for shared database access.
Examples of stand-alone database applications are numerous in
shareware, consumer software and general-purpose business pro-
grams.

When it comes to finding a stand-alone database solution for
Java, there’s good news and bad news. The good news is that solu-
tions are available. The bad news is that you may have difficulty
choosing the best one. No single solution may meet all your needs,
and many products are just now emerging. Several Java-related
issues such as application tiers, JDBC, portability and RMI further
complicate the situation. This article will help you choose a stand-
alone database solution for Java.

A Java Database Primer
Before we continue, let’s review some concepts relevant to the

use of databases with Java, including database types, application
tiers, JDBC and RMI.

Database Types
One way to classify databases is by their structure and function-

ality. Common structures include flat file, navigational, relational,
object-oriented and object relational. Functionality in a database
usually comes from its structure and any associated database man-
agement system (DBMS). A database’s structure provides function-
ality such as data types, records and indexing. A DBMS provides sig-
nificant functionality aimed at improving consistency, reliability and
performance.
• Flat file databases store information in an unstructured fashion

and usually have little added functionality.
• A navigational database structures data using fields, records and

tables. The structure allows easier access and adds functionality
such as data types and indexes. Navigating the database and
enforcing relational rules is the responsibility of the application.

• A relational DBMS (RDBMS) structures data based on relational
rules and usually provides other functionality such as a query lan-
guage, stored procedures, triggers and performance tuning.

• An object-oriented DBMS (OODBMS) doesn’t impose a relational
structure on data. Instead, objects are stored as objects and the
relationships between objects are preserved. Object-oriented
databases can increase development productivity and provide
other benefits.

• An object-relational DBMS (ORDBMS) combines the strength of
the relational structure of an RDBMS with the object orientation of
an OODBMS. It is usually implemented as an RDBMS with OO

by Tim Callahan

You May Shed a Tier or
Two Trying to Choose One

JDJ FEATURE

So You Want a
Stand-alone
Database

So You Want a
Stand-alone
Database

So You Want a
Stand-alone
Database

29VOLUME: 3 ISSUE: 12 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

extensions such as the ability to use classes as column types, to
access object methods and fields in queries, and enhanced SQL.

Application Tiers
An application’s deployment architecture is often described by

its number of tiers. Work is done on each tier, with certain tasks usu-
ally performed on specific tiers. Allocating tasks to tiers often
depends on whether they implement application logic, business
logic or database logic. Communication between tiers is typically
over a network.

Multiple tiers provide a way to advantageously partition and dis-
tribute the tasks in a database application to reduce client mainte-
nance costs and improve performance. These improvements come
at the cost of a more complex operating environment, however,
since each tier may require special software or additional adminis-
tration. Figure 1 illustrates typical tiered architectures.
• In a single-tier architecture (common in navigational databases)

the application handles all processing and directly accesses the
database. Application and database logic are tightly coupled and
usually no software except the application is required.

• A two-tier architecture splits the processing between the applica-
tion and a DBMS. The DBMS handles database access and provides
functionality such as integrity constraints, triggers, stored proce-
dures and performance tuning. This classic client/server architec-
ture partially decouples the application and database logic.

• A three-tier architecture attempts to completely decouple the

application, business and database logic. The application logic is
restricted to a presentation layer at the client, objects in the mid-
dle tier encapsulate business logic and the third tier provides
database access. This architecture is typical in distributed sys-
tems and is common with Java.

JDBC
JDBC (Java Database Connectivity) is an abstraction layer

defined by JavaSoft that provides a standard SQL-based interface
to any data source. You write your application in terms of JDBC
classes and methods and a JDBC driver handles the interface to the
actual data source. This provides an opportunity to decouple
applications from the database implementation since all data
access uses the JDBC API. A solution is JDBC-compliant if it imple-
ments the JDBC API and can pass JavaSoft compliance tests. An
important component of any JDBC solution is the driver that han-
dles the database interface. JavaSoft classifies JDBC drivers into
four types (see Figure 2), although not all possible drivers fit neat-
ly into a category.
• Type 1 – JDBC to ODBC Bridge: This driver translates JDBC

method calls to ODBC function calls and provides access to any
ODBC data source via JDBC. Multiple levels of translation can slow
performance, and deployment is complicated because of the
ODBC driver required on each client computer. Multiuser access
is complicated since many ODBC drivers are not networked

• Type 2 – Native API, Partly Java Driver: This driver translates JDBC
into calls to a native database API. Performance is generally better
than with Type 1 drivers because of one less translation layer.
Deployment problems remain since Type 2 drivers require the
database vendor’s proprietary library on each client computer.
Classic two-tier applications often use this type of driver.

• Type 3 – Network Protocol, All Java Driver: This driver translates
JDBC calls into a DBMS-independent network protocol that a mid-
dle-tier server translates into a DBMS-specific protocol. This flexi-
ble driver is well suited for distributed three-tier architectures.
Performance can be slow because the middle tier may itself use a
Type 1 or Type 2 driver to access the database. The additional
tiers make deployment complex and the network protocol may be
proprietary even though it’s database independent.

• Type 4 – Native Protocol, All Java Driver: This driver converts
JDBC calls directly into the network protocol used by a specific
DBMS. Native database calls are made directly over the network
so performance is usually good. The database vendor usually sup-
plies this type of driver since native DBMS network protocols are
generally proprietary.

Note that not all drivers fit into one of these four types. Consider,
for instance, a native API driver that is 100% Java and directly
accesses a local database. This type of driver is well suited for
access to desktop databases but doesn’t fit into one of JavaSoft’s
defined types. Some vendors do supply unique JDBC drivers that
provide advantages in certain scenarios.

RMI
Two Java applications can communicate over a network using a

standard technique called Remote Method Invocation or RMI, which
is defined by JavaSoft and is available free. As its name implies, RMI
lets a client application invoke the methods of objects running on a
remote server.

Shared database access is often implemented with RMI, so an
overview is in order. To use it, first create a public interface (called
the remote interface) to define the remote methods. Then create
classes that implement the remote interface, called (not surprising-
ly) implementation classes. The remote objects are instances of these
classes running on the server. Next, use JavaSoft’s RMIC compiler to

http://www.JavaDevelopersJournal.com• VOLUME: 3 ISSUE: 12 1998Java DEVELOPER’S Journal30

create client-side object stubs and server-
side object skeletons based on the imple-
mentation classes. The stubs forward RMI
calls from the client over the network to the
server skeletons, which in turn forward
them to the remote objects. The remote
objects execute their remotely invoked
methods and work gets done.

To get it all running, start the RMI Reg-
istry on the server. This basic naming ser-
vice lets clients obtain references to remote
objects. Each remote object must register
itself with the RMI Registry when instantiat-
ed. Client applications connect to the reg-
istry to look up references to the registered
remote objects. Once obtained, the refer-
ence is used to invoke the methods of the
remote object. By default, RMI uses TCP/IP
sockets for communication, although other
transport methods can be implemented.

JDBC-compliant solutions can be net-
worked by using the RMI--JDBC bridge. This
free product comes with a Type 3 JDBC dri-
ver for use in your application. This driver
connects to the RmiJdbc server that is
included. The server uses any JDBC driver
to connect to the database of your choice.
Figure 3 shows the RMI to JDBC bridge.

Evaluating Solutions
There are many things to consider when

evaluating database solutions. The criteria
that are important for a specfic application
depend heavily on the requirements and
constraints unique to that problem. In this
article, the requirement that the database is
for stand-alone use with Java affects which
criteria are important. The criteria most
affected by this requirement are discussed
below.

Database Type
The type of database used impacts devel-

opment effort and application complexity.
Those with no object orientation require
you to map your objects to their structure,
which takes time and requires code. You
may also lose the ability to preserve and
exploit relationships between objects. A
DBMS is beneficial if it provides functionality
that doesn’t have to be built into the appli-
cation.

To fully leverage the object-oriented
nature of Java, some type of object orienta-
tion in the database is desirable. This gener-
ally means using an OODBMS or ORDBMS of
some sort. Some solutions provide tools and
frameworks to help map objects to relation-
al structures and to put a more object-ori-
ented face on relational databases. The
capabilities of a DBMS of any type can be
valuable as well.

Database Format
The database can be in a proprietary for-

mat or what I call a standard format. A pro-
prietary format is just that, and is usually
unique to a solution. By “standard” format I
mean a common or established format that
is accessible by a number of DBMSs and
tools. Which option is best depends on your
application.

Standard databases provide access to
legacy data, use familiar file formats and
have mature administration tools. They also
provide a way of transitioning to Java with-
out learning a new database. Two drawbacks
include a lack of power in the native data-
base, and having to rely on an outdated for-
mat. Another disadvantage is that your only
options for accessing some common desk-
top databases may be to use a JDBC–ODBC
driver or to roll your own solution.

Many newer solutions designed for Java
use proprietary database formats. This is not
necessarily a bad thing. After all, in an evolv-

ing environment today’s proprietary format
might be tomorrow’s standard. Proprietary
formats often provide significant added
value, such as transaction processing, disas-
ter recovery, object orientation and replica-
tion. One drawback of proprietary formats is
the potential lack of development and admin-
istration tools. In addition, proprietary for-
mats may still be immature and subject to
the risks associated with early adoption.

JDBC Compliance
JDBC compliance provides many benefits

but may not be necessary for all applica-
tions. A major advantage is the ability to
make applications modular by decoupling
them from a specific database solution,
allowing you to plug in a different database
implementation without changing the appli-
cation. Another benefit is database scalabili-
ty to address performance or functionality
issues. JDBC also supports adding tiers for
distributed deployment.

One drawback of JDBC-compliant solu-
tions can be performance. Type 1 drivers
have multiple levels of translation that inhib-
it performance. Likewise, Type 3 drivers use
middle tiers that in turn may use Type 1 or
Type 2 drivers. Another problem is deploy-
ment complexity, since there may be various
libraries and executables required on the
client machines or on middle-tier servers.
This is true for Type 1, Type 2 and Type 3 dri-
vers. And finally, if you need to access a com-
mon desktop database, you may not be able
to find any drivers except the Type 1 ODBC
to JDBC bridge.

Multiuser Implementation
Shared database access can be imple-

mented in a number of ways with Java. Some
solutions provide for multiple transactions,
multithreading or both. Other solutions
implement multiuser control through classic
table and record locking, or feature more
object-oriented methods of controlling con-
current object access. Still others require
that the application implement and enforce
all multiuser control.

However shared access is implemented,
there’s one thing most multiuser solutions
for Java have in common: they require some
type of server to provide network access to
the shared database. This means that a
multiuser Java database application will
most likely have a two-tier architecture with
a server component. Many solutions come
complete with a server that supports shared
database access, while others require that
you create your own server. A two-tier archi-
tecture also requires communication
between the clients and server. Sharing data-
bases over a network requires a transport
protocol. Java uses TCP/IP sockets by
default with other methods supported.

Figure 1: Application tiers

Application
Logic

Application

Tier 1

DB LogicBusiness Logic

DB

Three TierTwo TierSingle Tier

Application
Logic

Application

Tier 1

Business Logic

DB

DBMS

Tier 2 Business Logic
(Stored Procedures)

DB Logic

Network

Application Logic

Application
Tier 1

Network

Business Logic
(Objects)

Tier 2

Network

Middle Tier Server

DB Logic
Tier 3

DBMS

DB

31VOLUME: 3 ISSUE: 12 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

How shared access is implemented sig-
nificantly impacts development effort and
deployment complexity. One of the biggest
issues to consider is the amount of work
needed to share a database. This may
include writing a database or object server,
developing application-level concurrency
control or extending the solution using RMI.
Another issue is how much work the user
must do to install and administer the data-
base. Components such as the database
server, RMI registry and ODBC drivers need
to be installed, configured and maintained.

Also important to look at is the difference
between the single-user and multiuser ver-
sions of the solution. Some solutions offer an
easy migration path while others require
supporting two different versions of the
application. There may also be cost differ-
ences since some solutions offer an entry-
level version that supports single-user
access, with a more expensive enterprise-
level version required for shared access.

One risk is that a multiuser solution may
not really be multiuser. Ideally, the solution
should support multithreading and multiple
transactions. Some solutions may emulate
concurrent access but be serialized at a low
level. This becomes an increasing problem
as transaction rates rise.

Robustness
Robustness encompasses both resis-

tance to failure and ease of recovery once a
failure occurs. Applications typically pro-
vide some robustness but the database must
be robust as well. This is especially impor-
tant for stand-alone databases that need to
run with little or no user administration. Ide-
ally, failures shouldn’t happen in the first
place. However, given that some failures are
inevitable, a robust solution should make
recovery as easy as possible.

One type of common failure is data
inconsistency, which results in incorrect
information even though the database itself
is still functional. Common causes are partial
updates, improper validations and commu-
nication failures. Guarding against inconsis-
tency may be the responsibility of the DBMS,
the application or both. Solutions that sup-
port transaction processing and enforce
database structure offer better protection
against this type of failure.

Another kind of failure is corruption of
the database files or their structure, which
renders them unreadable or inaccessible.
Some solutions provide low-level recovery
functions for repairing corrupted databases.
If the database is in an open format, other
repair tools may exist. Some solutions even
sport transaction logging with full automatic
recovery. Depending on the solution, you
may have to build some error recovery into
the application to ensure adequate reliabili-

ty. DBMSs generally provide increased
robustness through their functionality. Be
wary of solutions that are easy to corrupt
through simple mistakes.

Portability
Since it’s one of the major advantages of

Java, you must consider the portability of all
of the components of the solution. This
includes the database server, tools, code
generators, data files and any special
libraries or drivers. The main requirement
for portability is that the solution be 100%
Java. Most solutions are 100% Java on the
client side but not necessarily on the server
side. Depending on the application’s archi-
tecture and target platforms, the portability
of any server-side components may be less
important. If libraries or drivers are required
on the client, they must be portable or avail-
able for all target platforms.

The risk associated with not choosing a
portable solution is that your application
may not run on all platforms or be able to be
developed on specific platforms. The impor-
tance of this depends on the target plat-
forms for the particular application.

Modularity
A solution’s modularity can be gauged by

how easy it is to implement in an existing
application and, once implemented, how
easy it is to remove it or substitute another
solution. The easier these things are, the
more modular the solution. Modularity pro-
vides flexibility, which allows unexpected
issues to be addressed quickly and easily.
JDBC-compliant solutions are inherently
modular because of the modularity of JDBC.
Solutions that are not JDBC-compliant or
that present abstraction layers on top of
JDBC tend to be less modular since the
application code is coupled with the solu-
tion. A solution’s modularity also depends

on how you implement it in your application.
While modularity is desirable, other fac-

tors may be more important – for instance,
using an application generator or persis-
tence framework to implement object per-
sistence. The solution may not be modular
since the application is tightly coupled to
the solution, but the productivity benefits
may outweigh the potential drawbacks.

Significant Limitations
When selecting a solution, be alert for

limitations that have implications for the
application. Many Java database solutions
suitable for stand-alone use are relatively
new and not fully implemented. If limitations
are found, there may be upgrade paths that
provide relief. A JDBC-compliant solution,
for example, lets you easily change the data-
base solution to address limitations.

The database implementation may have
limitations such as missing data types, inad-
equate indexing capabilities, partial SQL
implementation or lack of tools. Any solu-
tion worth considering probably provides
enough database functionality for most
applications, but look more closely if there
are special requirements. Also, look for per-
formance limitations. Factors like applica-
tion architecture, multiuser implementation
and JDBC driver type all affect performance.
Often performance limitations aren’t evident
until you subject the application to real
operating conditions.

Significant Value Added
Some solutions provide significant value

added for both the developer and the end
user. Features like error recovery, object ori-
entation, replication, tools, code generators
and even report writers are examples of
added value that come with some solutions.
Since many solutions are relatively new, you
should ensure that important features and

Figure 2: JDBC driver types

Application
CLIENT

Type 1 JDBC Driver

DBMSDBMS

Type 1 Type 2 Type 3 Type 4

ODBC DLL
DB API LIB

Application
CLIENT

Type 2 JDBC Driver

DB API LIB

Application
CLIENT

MIDDLE TIER SERVER

Type 3 JDBC Driver

Application
CLIENT

Type 4 JDBC Driver

JDBC Driver

JDBC Driver JDBC Driver

DB API LIB ODBC DLL
DB API LIB

DBMSDBMS DBMSDBMS DBMSDBMS DBMSDBMS

http://www.JavaDevelopersJournal.com• VOLUME: 3 ISSUE: 12 1998Java DEVELOPER’S Journal32

additions work as advertised. The portabili-
ty of add-ons and tools may also be an issue.

Look beyond the solution vendor for
other sources of added value. Standard data-
bases often have value added from existing
tools and support for the format. JDBC-com-
pliant solutions allow use of generic JDBC-
based tools.

Moving to Distributed Deployment
The application may be stand-alone now,

but it might not always be so. It’s worth con-
sidering how easy it is to migrate a solution
to distributed deployment. Some solutions
easily scale from one tier to three or more
with little if any change to the application.
Others may provide a migration path
through a related set of products. Some solu-
tions aren’t easy to migrate beyond a one- or
two-tier architecture. JDBC-compliant solu-
tions can support multiple tiers by employ-
ing a Type 3 driver to communicate with a
middle tier.

Administration Tools
To develop and support any database

application, you need administration tools
to create, modify, delete, query and other-
wise maintain the database. The quality of
these tools will affect your development and
maintenance efforts. The database format
(standard or proprietary) and JDBC compli-
ance largely determine the choice of tools.

If the database uses a proprietary format,
you may be dependent on the vendor for
maintenance tools. An exception is if the
solution is JDBC-compliant. There are an
increasing number of JDBC-based tools
available to maintain compliant data
sources. If the database is in a standard for-
mat, tools are probably already available.
Some solutions come with their own tools
but functionality varies.

User Administration
User administration refers to the work

the user must do to install and run the appli-
cation. By definition, the user will do most of
this for stand-alone applications, and it’s
important to make things as easy as possi-
ble. A Java application is not inherently
more difficult to install and run than any
other executable file. The potential for diffi-
culty arises when it comes to the database
and related components. If a solution has
multiple components, any one of them may
require administration by the user. Typical
components requiring administration
include database servers, the RMI registry,
ODBC drivers, native DBMS drivers and
communication protocols like TCP/IP. It’s
important to consider the demands that the
entire solution places on the user when mak-
ing your choice.

Some solutions are specifically designed

for zero administration. Newer solutions are
more likely to require less administration,
but probably entail a proprietary database
format. A true zero administration database
with full automatic recovery is ideal.

Cost
Cost is always an issue when choosing a

solution. This is especially true for stand-
alone database applications since typically
their scale is small. The total cost of the
database solution must not be so high that
an enterprise-scale application is required to
justify it.

Most solutions require a development
license, usually on a per-developer basis.
Typical developer licenses cost anywhere
from nothing to a few hundred dollars per
license. Many solutions also require you to

pay for runtime or deployment licenses. You
want this cost to be low since a license is
usually required for each copy of your appli-
cation. Deployment licenses range from
nothing or less than a dollar all the way up
to several hundred dollars per client.

Another typical cost is for source code
licenses. You may want the source code to
modify or enhance a solution. Source code
licenses are not always available, but when
they are they can range from several hun-
dred to several thousand dollars. Other pos-
sible costs are for any administration or sup-
port tools required to develop with the solu-
tion or to support the application.

One final cost to watch out for is some
type of minimum initial investment required
before you can use a product. An example
would be a required purchase of a certain
number of deployment licenses along with
the development licenses. Although uncom-

mon, some vendors do use this approach
and the cost can be thousands of dollars.

Solution Types
Now that you know what to look for,

here’s a look at the various types of data-
base solutions available for stand-alone use.
Solution types are first classified by whether
or not they are JDBC-compliant. Then
they’re roughly subdivided based on the
type of database they access. Notable
strengths and weaknesses of each type of
solution are described below, with actual
products used as examples where possible.

JDBC to ODBC Bridge
This solution is simply a Type 1 JDBC dri-

ver that converts JDBC calls to ODBC. It’s an
attractive solution because ODBC drivers
are widely available for many standard data-
bases and the JDBC driver is available free
from JavaSoft. JDBC compliance is the other
main advantage to this solution.

Drawbacks include possible slow perfor-
mance due to multiple translation layers in a
Type 1 driver. Deployment is complicated
because ODBC is required on each client.
Since most ODBC drivers aren’t networked,
the RMI to JDBC bridge may be required for
shared access. Portability can be an issue
depending on the choice of database and
ODBC drivers. There are many products
available in this category. Companies like
Intersolv and Openlink Software sell ODBC
drivers and the JDBC to ODBC bridge is
available free from JavaSoft.

JDBC to Standard Database
Solutions of this type use JDBC to access

a standard database format directly using a
Type 2 or Type 4 JDBC driver. A solution
accessing a standard database with a native
API, all Java driver (not defined) would also
fall into this category. Type 3 drivers don’t fit
in this category since they interface with a
middle-tier server and not with the data-
base. Advantages of this type of solution
include JDBC compliance and the benefits of
a standard database format. Performance
should also be better than with the JDBC to
ODBC bridge.

One major disadvantage of this solution
is that Type 2 and Type 4 drivers aren’t com-
monly available for databases suitable for
stand-alone use. Deployment may be com-
plicated for a Type 2 driver if an external
library is required to access the database.
Products suitable for stand-alone use aren’t
readily available in this category. JDBC
access to traditional desktop databases is
usually via the JDBC to ODBC bridge.

JDBC to Proprietary Database
This type of solution may also use a Type

2 or Type 4 JDBC driver to directly access a

“Multiple tiers

provide a way to

advantageously

partition and

distribute the

tasks in a

database

application…”

33VOLUME: 3 ISSUE: 12 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Oracle
www.oracle.com/info/27

34 • VOLUME: 3 ISSUE: 12 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

proprietary format database. As you might
expect, the database vendor usually sup-
plies the driver. Some solutions come with a
JDBC-compliant driver that doesn’t fit into
one of the four defined types. In addition to
the advantages of JDBC compliance, solu-
tions with proprietary database formats
often offer added value. Typical features
include DBMS functionality, object orienta-
tion, low administration design, transaction
processing and replication. Since many pro-
prietary formats for Java are new, potential
drawbacks include early adopter risks and a
lack of mature support and administration

tools. The flexibility of JDBC mitigates the
risks associated with a proprietary solution.

One example of this type of solution is
InstantDB by Instant Software Solutions, Ltd.
This proprietary database comes with an
unclassified JDBC driver that is 100% Java
and directly accesses a local database. This
solution provides added value through some
SQL implementation, triggers and adminis-
tration tools. Another example is JDBMS by
Cloudscape, Inc. This is a full-featured
ORDBMS that provides significant value
added with enhanced SQL, automatic disas-
ter recovery, transparent migration from one
to n tiers, low administration design and
advanced replication features.

Abstraction Layer to JDBC
This type of solution provides a layer of

abstraction on top of JDBC in an attempt to
make life easier for the developer. In some
solutions this abstraction layer is designed
to help bridge the gap between the object-
oriented nature of Java and the relational
nature of JDBC. In other solutions the
abstraction layer simply provides a higher
level programming interface than JDBC.
Direct JDBC access is usually available if
needed. These solutions often provide sig-
nificant added value in the form of assis-
tance in mapping objects to relational
tables, Java and SQL code generation, and
transparent migration to multiple tiers.

A potential drawback of these solutions is
a lack of modularity at the application level
due to the proprietary abstraction layer.
JDBC compliance provides flexibility on the
database end that mitigates this effect. Figure
4 shows a diagram of this type of solution.

One product in this category is CocoBase
Lite from Thought, Inc., which provides the
CocoBase API abstraction layer. This API
implements persistence by mapping each
class to one relational table. If you write your
code in terms of the CocoBase API, you can
upgrade transparently to CocoBase Enter-
prise to migrate to a multitier architecture.

Another product in this class is JDBC-
Store from LPC Consulting Services, Inc.
This product comes with a workbench appli-
cation that helps you build a model that
maps objects to a relational database
schema. The workbench automatically sub-
classes objects and generates Java and SQL
to implement transparent persistence using
any JDBC data source.

A final example is DBTools.J by Rogue
Wave Software, which is an abstraction layer
that provides database replication and syn-
chronization functionality. It also includes
wrappers for JDBC classes that provide
enhanced exception handling.

Non-JDBC to Standard Database
These types of solutions let you access a

standard format database without using
JDBC. Generally, this type of solution pro-
vides access only to a single database for-
mat. There aren’t many of these solutions
currently available since the JDBC to ODBC
bridge accesses many standard databases.
The lack of JDBC compliance is a drawback
with this type of solution because it limits
flexibility. Some potential advantages
include compatibility with a standard data-
base format, better performance than using
the JDBC to ODBC bridge and a familiar data
access API. Non-JDBC solutions may also
provide lower level database access than
JDBC, which is desirable and even required
for some applications.

One example of this type of solution is
XBaseJ from American Coders, Ltd., which
provides classes to directly access and
manipulate XBase files and indexes. Miscel-
laneous utilities and tools are available, as is
a free multiuser server component. Code-
Base also offers an ODBC driver and the
JDBC-ODBC bridge to access the CodeBase
server.

Non-JDBC to Proprietary Database
Solutions of this type access a propri-

etary database without using JDBC. These
solutions are usually implemented as a set of
classes and/or interfaces for storing and
retrieving objects in the database. Classes
for manipulating, indexing and querying the
database may be provided as well. Since pro-
prietary databases are usually designed for
use with Java, they often have some object
orientation.

This type of solution should have good
performance due to a native driver. As stat-
ed above, proprietary databases often pro-
vide more object orientation than JDBC-
compliant solutions. They also can provide
lower level database access than JDBC if
needed. Drawbacks include a lack of JDBC
compliance and the disadvantages associat-
ed with a proprietary solution.

An example of this solution is Stream-
store from Bluestream Database Software
Corp. This object-persistence engine pro-
vides a simple interface that classes imple-
ment so they can be saved, retrieved and
indexed. Classes for manipulating and
querying the object store are also provided.

Other
One other type of solution is what I call a

data management framework. This class of
solution provides a database application
framework that you can customize to create
your application. Its advantage is that you
can create a database application very
quickly. The disadvantage is that you’re
completely tied to a solution that may not
provide the functionality you need.

An example of this kind of solution is

Figure 3: RMI to JDBC bridge

Application
CLIENT

SERVER

RMI - JDBC Type 3
JDBC Driver

RMI

RMI

RMI REGISTRY

ANY JDBC DRIVER ANY JDBC DRIVER

RMI JDBC SERVER

DBMSDBMS DBMSDBMS

Network

Figure 4: Abstraction layer to JDBC

CLIENT

Application Logic

Proprietary
Abstraction Layer

Proprietary API

JDBC

JDBC

Any JDBC Driver

DBMSDBMS

Figure 5: Non-JDBC database access

CLIENT

Application Logic
Application

Proprietary
Layer

DB DB

Proprietary
Interface

35VOLUME: 3 ISSUE: 12 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Slangsoft
www.slangsoft.com

36 • VOLUME: 3 ISSUE: 12 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

MaxBase from Max Marsiglietti. This solu-
tion uses indexed ASCII files to store data.
Data access and presentation are controlled
by the MaxBase application, which can be
customized somewhat to meet your particu-
lar needs.

Some Recommendations
By now you should be ready to go out and

find the ideal stand-alone database solution
to use for your Java application. But what
exactly should you look for? Here are a cou-
ple of recommendations to get you started.

Shed a Tier or Two
Perhaps the most important requirement

for a stand-alone database application is
that it be simple to install and run. This must
be true for the whole system including the
application, database and supporting soft-
ware. Multiple tiers make an application
more complex, which can make it difficult to
install and run. This is a good reason to try
to limit the number of tiers in your applica-
tion.

One-tier applications are nice because
everything comes in one neat package. If you
don’t need to share your database, you may
be able to use a one-tier solution. If you do,
be sure to plan for migrating to more tiers in
the future. Shared database access will most
likely require a two-tier solution. Traditional
two-tier RDBMSs such as Oracle and Sybase
are not suitable for stand-alone use since
they’re complex to install and configure and
require professional administration.

A two-tier solution destined for stand-
alone use should be as simple as possible.
There should be minimal software to install
and configure on the client and server, and
the database should need little or no admin-
istration. When selecting a two-tier solution,
the simpler the better.

To JDBC or Not to JDBC?
JDBC is good because it provides modu-

larity, portability and a standardized SQL-
based API for accessing different data
sources. Using JDBC mitigates some risks
since you can change databases simply by
changing the driver. Because of its many
benefits, you should use a JDBC-compliant
solution unless there are compelling reasons
not to.

One reason not to use JDBC is to lever-
age experience with a particular database
or database API. You may also want to con-
sider other solutions if you have to use a
Type 1 JDBC driver since the ODBC–JDBC
bridge can be slow and requires special soft-
ware on each client. Non-JDBC solutions
often have some significant added value
that may be important to your application.
And finally, a JDBC-compliant solution may
not provide enough low-level database

access and control for some applications.

Get Oriented
Storing objects in a database that has no

object orientation can create additional
overhead during development and in the fin-
ished application. If objects and their rela-
tionships can’t be stored directly in the data-
base, then you have to map them to a form
that can be stored. Object navigation and
database queries will also be affected. Over-
coming the mismatch between objects and
your database structure can add significant-
ly to your development tasks.

One way to reduce the effort is to use a
database solution that has some object ori-
entation. Object orientation can come in the
form of an OODBMS or an ORDBMS. Other

solutions allow you to store and index
objects but don’t provide DBMS features.
Another approach is to use a tool that helps
you create and maintain the object-to-data-
base mappings. Several solutions offer
frameworks or workbenches that help store
objects in non-object databases.

And Finally
Two final recommendations are to pay

attention to the extras and keep an eye
toward the future. By “extras” I mean several
things, including goodies that come with a
solution, tools required to implement the
solution and everything needed to deploy
the finished application. There can be a lot of
these extras, and all of them can affect the
development and maintainability of the
application. Make sure you consider the
whole picture when deciding on the best
solution.

“Keeping an eye toward the future”

means you should consider how your appli-
cation might need to change. You may be
developing a stand-alone database applica-
tion now, but what if you need to change to
more distributed deployment? How easy will
it be to handle increased loads or changing
data requirements? Thinking about these
issues now will help you later because the
solution you choose determines in part how
easily you can adapt your application to
future requirements.

The State of the Art
Now you know some things to look for in

a stand-alone database solution for Java
and how to pick among the products you
find. But what exactly are you likely to find?
Well, the available solutions are less mature
than those aimed at enterprise-level data-
bases. New products are still under devel-
opment and alternatives are limited for
some solution types. Current products
span the range when it comes to design,
functionality and quality. Product cost is
usually reasonable, with full-featured solu-
tions tending to be more expensive than
less functional ones.

One area that is noticeably thin when it
comes to current products is the ability to
access popular desktop databases without
using the JDBC to ODBC bridge. Some non-
JDBC products are available for accessing
XBase, but if you want to use JDBC to access
another standard database, you’ll probably
have to use JDBC with a Type 1 driver.
There’s a lack of Type 2 and Type 4 drivers
for desktop databases, which is unfortunate
since they can provide faster access and
require less configuration than Type 1 dri-
vers. A native API, all Java JDBC driver
that’s 100% Java and directly accesses desk-
tops’ databases using a native API would
also be nice. This type of driver would be
faster, simpler and more portable than a
Type 1 driver.

As I said at the start, there is both good
news and bad news. The good news is that
you can create real stand-alone Java data-
base applications with the solutions avail-
able today. The bad news is that you’ll face
some extra difficulties and risks due to the
immaturity of the product offerings. The
bright side is that your choices will improve
as more products emerge and existing prod-
ucts are refined. No single solution may meet
all your needs, so weigh the benefits against
the risks to pick the best one for you.

About the Author
Tim Callahan is a software developer and consultant
living in Oakland, California. You can find him at his
company’s Web site at www.palocolorado.com or at
tcallahan@palocolorado.com.

“...the solution

you choose

determines in

part how easily

you can adapt

your application

to future

requirements.”

tcallahan@palocolorado.com

37VOLUME: 3 ISSUE: 12 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

JHL Computer
Consultants

www.jhlcomp.com

AAAAAAAAA

http://www.JavaDevelopersJournal.com

To gain competitive advantage, Global
Mobility Systems had to speed its products
to market. As the company discovered, this
hinged partly on choosing the right Java
platform. That is not an easy task because
platforms can appear similar – until devel-
opers start using them. Global Mobility
eventually selected a pure Java platform
that readily placed Java’s full dynamic
power into developers’ hands, with
remarkable results.

Mike Pirie, Global Mobility’s VP of prod-
uct development, targeted Java early on as
the language of choice for its new product
development – a vehicle to deliver applica-
tions to cellular phone companies (i.e.,
wireless carriers). This vehicle had to man-

age large numbers of
object-oriented compo-
nents remotely across
heterogeneous IT envi-
ronments – a hallmark of
distributed enterprise
solutions.

Setting the Stage
In several indus-

tries rapid development
bestows a potent advan-
tage on nimble competi-
tors. As a new study by
International Data Cor-
poration (IDC) indicates,
Java gives development
teams that edge. Accord-
ing to IDC, pure Java pro-
jects requiring deploy-

ment on multiple platforms yield 25% aver-
age savings compared with using a conven-
tional OO language.

The project described in this article
proves IDC’s point and goes further. Global
Mobility leveraged Java’s power and, by
choosing the right Java platform, shortened
development by three months – a 30% sav-
ings on the company’s anticipated 10-
month time to market.

With this achievement Global Mobility is
differentiating itself from competitors and
reducing development time and costs.
Choosing the right platform is also enabling
the company to build products with more
advanced features and lower maintenance
costs – highly appealing to its potential cus-
tomers.

Global Mobility’s Market Challenge
The open system and applications devel-

oped by Global Mobility help wireless carri-
ers bring advanced services to business
users faster and more flexibly than by any
other means. One application enables busi-
ness cellular users to reach colleagues
within a company, even when calling long
distance, by dialing only the recipient’s
four- or five-digit in-house extension num-
ber. A second application lets cellular users
contact their carrier’s customer care center
by dialing 611, even when roaming outside
their home service area.

Advanced capabilities like these give
carriers new ways to compete in a cut-
throat market, enabling them to capture
business customers and retain them on a
basis that goes beyond commodity price
per airtime minute.

Business customers make a large impact
on carriers’ profitability because they use
the most advanced, high-margin wireless
services. But with little differentiation
among wireless carriers, the “churn rate”
among commercial customers runs as high
as 12% per month as these businesses shop

Java platform
hands Global

Mobility a 30%
time-to-market

advantage

About the Author
Lisa Chiranky is director of product marketing for
ObjectSpace, Inc., creator of JGL, the Voyager plat-
form for enterprise Java solutions and C++ toolkits.
For more than 20 years she has driven marketing ini-
tiatives at high technology firms ranging from startups
including Landmark Graphics and Convex Computer
Corporation to Fortune 500 companies including
Hewlett-Packard and Texas Instruments. She can be
reached at lchiranky@objectspace.com.

by Lisa Chiranky

lchiranky@objectspace.com

Platform Strategy
Distributed enterprise solutions

demand a dynamic infrastructure
by David Norris

Developing true distributed solutions in
heterogeneous environments – and modify-
ing these solutions in years to come – evokes
traditional programming challenges in a new,
more urgent context. On an enterprise scale,
programming chores that could be tolerated
(though certainly not welcomed) in local use
become overwhelming burdens, stretching
out time-to-solution, driving up costs and, by
making modifications more difficult, reduc-
ing the enterprise’s long-term ability to
respond to business changes.

As the accompanying article demon-
strates, the choice of a distributed computing
platform makes an enormous impact on an IT
organization’s ability to create advanced
applications and manage change. Organiza-
tions are discovering that ORBs alone fail to
provide a sufficient infrastructure for scal-

• VOLUME: 3 ISSUE: 12 1998Java DEVELOPER’S Journal38

Accelerating Success

Voyager - the standards-neutral platform
for distributed object computing

39VOLUME: 3 ISSUE: 12 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

for the best price deal. Carriers want to dif-
ferentiate themselves in new ways. Service
products like those from Global Mobility
help them do it.

Traditionally, such products are slow to
reach market. They are typically developed
by large manufacturers as add-ons to pro-
prietary telephony equipment sold to wire-
less carriers. Global Mobility provides car-
riers with service products much faster
than other manufacturers do – a crucial
strategic advantage both for the company
and for the wireless carriers that buy its
software products and services.

To realize its advan-
tage, Global Mobility
must deliver the goods
in an open systems envi-
ronment – unprecedent-
ed in this industry – and
deliver faster than any-
one else.

Technical Challenge
Global Mobility had to

accelerate development
of its initial applications
plus a client/server vehi-
cle for these and the
company’s future prod-
ucts. Wireless carriers
use this vehicle, called
Mobility Operating Envi-
ronment (MOE), to inte-
grate Global Mobility
applications into their

networks. At the heart of MOE lies an appli-
cation manager, a unit that must perform as
a distributed enterprise solution, managing
remote objects across wireless carriers’
disparate computing and network environ-
ments – and, in some cases, across envi-
ronments owned by carriers’ business cus-
tomers.

Global Mobility wanted MOE to be high-
ly portable on both the client and server
sides. Furthermore, the application manag-
er had to interact with many MOE subsys-
tems such as protocol stacks; call process-
ing engines; databases that store logging,
tagging and provisioning information; a
client-provisioning component; and a
remote-alarm monitor.

The application manager also had to be
able to execute on different server plat-
forms owned by business cellular cus-
tomers, part of Global Mobility’s long-term
deployment strategy. On the client side it
had to run on Windows 95 and NT, as well
as on any other box that supports a Java
client, and it also had to execute on intelli-
gent telephony devices.

That’s not all. Sitting on a wireless carri-
er’s network, MOE had to handle call pro-
cessing protocols, talk to telephony switch-
es and other components via the SS7 proto-
col, interact with a carrier’s own TCP/IP
backbone, and also reach across TCP/IP net-
works owned by the carrier’s corporate cus-
tomers in order to interact with customer
databases.

All this was a tall order. Yet the technical

challenge that faced Global Mobility also
confronts many large IT organizations
developing enterprise-scale distributed
solutions for their own use.

Choosing the Right Platform
Global Mobility’s development team

needed robust Java facilities to interoper-
ate with many different protocols and sys-
tems. If the company had to achieve this by
modifying class descriptions using source
code, it would stretch out product develop-
ment. And, as Global Mobility’s products
evolved in a fast-changing market, it would
also make it more costly and time-consum-
ing to reuse components.

As a result, choosing the right Java plat-
form would have a major impact on the
company’s ability to follow through on its
business strategy. Mike Pirie took a system-
atic approach to the selection process.

“When you adopt a Java Platform, you
are also adopting that platform’s supplier
as your development partner,” Pirie
observes. With each prospective supplier
he addressed issues:
• Does the supplier and its platform have a

significant track record?
• Does the supplier have a methodology

certification program?
• Robust professional services?
• Education and training?

Initially Pirie explored these issues by
studying brochures and Web sites, and by
talking with sales reps. With this effort,

able, Java-centric distributed solutions.
Java provides a solid foundation for a

scalable, distributed, standards-neutral
infrastructure, but by itself is no more suf-
ficient than a skyscraper that consists of a
foundation only. Much more is needed.

Java’s greatest value resides in dynamic
capabilities that are far from explicit in the
language. A distributed computing plat-
form must leverage these powerful but
implicit capabilities, making them readily
accessible to programmers and easy to use.

The following features and capabilities
help define a dynamic, pure Java infra-
structure – one that reduces the time, effort
and cost of building and maintaining
advanced solutions across disparate sys-
tems on an enterprise scale.

Productivity
Developers become more productive

when they are free to focus on adding
value to their solution instead of building
the infrastructure. Higher productivity pro-
vides a crucial competitive advantage, and
controls development costs. A dynamic

platform should:
• Instantly remote-enable any Java class

without modification
• Generate proxies dynamically at run-

time, eliminating the need for stub gen-
erators and helper files

• Provide natural Java bindings, including
remote pass-by value

• Allow remote construction of objects,
eliminating the need for additional facto-
ry code

Compatibility
A standards-neutral platform simplifies

application design. It also enables develop-
ers to readily integrate enterprise and lega-
cy systems, further raising productivity and
speeding the development cycle. A proper-
ly implemented dynamic infrastructure
enables objects to simultaneously interop-
erate with multiple ORB standards, in
effect creating universal servers and clients.
The infrastructure should:
• Readily integrate systems with full native

support for CORBA IDL and IIOP with bi-
directional IDL/Java conversion

• CORBA-enable Java classes at runtime,
without modification

• Support key RMI interfaces

Performance
As the scale of a distributed solution

increases, so does the importance of rapid,
efficient, remote object messaging. A
dynamic infrastructure must permit objects
on geographically distributed VMs to inter-
act without slowing enterprise applications
or burdening network traffic. The infra-
structure should:
• Maximize network bandwidth with a

highly optimized native protocol, mini-
mizing code required for a roundtrip
message

• Provide thread pooling for efficient reuse
of thread resources

Messaging
A rich feature set further improves pro-

ductivity by freeing developers from the
need to build the object communications
infrastructure. Therefore, a dynamic plat-
form should:

Global Mobility’s
MOE system

40 • VOLUME: 3 ISSUE: 12 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Pirie pared the prospect list.
Support was also a crucial

issue. Many IT organizations,
both large and small, can’t find enough
highly experienced Java developers. In
many cases teams accelerate projects by
using a platform supplier’s expertise to
help streamline development. Pirie sought
one who was able to provide experts on
short notice to work with his development
team in Bellevue, Washington. Pirie held
frank discussions with his prospective sup-
pliers.

Two platforms were tested in-house.
One was quickly rejected because enabling
remote messaging by writing stubs and
modifying classes to implement IDL inter-
faces rivaled the manual coding required to
program in C++.

The other Java platform, Voyager Pro-
fessional Edition 2.0 from ObjectSpace,
eliminated the need for stubs, helper class-
es and source code modification. “It freed
our developers to focus on their mission:
delivering advanced solutions as quickly as
possible,” Pirie says. “That’s what we were
looking for.”

Dynamic Infrastructure
Less than seven months after Pirie’s

team began developing the MOE, wireless
carriers were beta-testing it along with
Global Mobility’s initial applications. Voy-
ager provided the Global Mobility team
with a dynamic infrastructure that sped
development several ways:
• Dynamic proxy generation – “Dynamic

proxies kept us from having to build manu-
al stubs for Java classes,” Pirie says. With
other platforms, he adds, “you have to cre-
ate extensive IDL and stub classes for most
of the Java JDK classes. Voyager eliminated
such chores by generating interface code at
runtime to enable remote object messag-
ing. This also reduced our configuration
management.”

His team found that a CORBA-only ORB
solution generated up to six objects (plus
the associated helper classes), adding
unnecessary complexity and more manual
work to the solution by multiplying the
number of components to be managed.
Dynamic proxy generation provided in Voy-
ager also eliminated these chores and sim-
plified Global Mobility’s solution design.
• Distributed garbage collection – “We had a

major concern about the amount of man-
ual programming imposed by Java plat-
forms to clean up remote objects that
were no longer referencing any particular
resource within the network or our sys-
tem,” Pirie recalls. Voyager readily imple-
ments such distributed garbage collec-
tion. “To us, that reclaim capability was
one of Voyager’s most attractive fea-
tures.”

• Advanced features for object communica-
tions – Global Mobility developers found
it easy to implement sophisticated func-
tionality such as multicasting, i.e., pub-
lishing the MOE alarm service to remote
clients ranging from Windows 95 PCs to
intelligent telephony devices. To accom-
plish this, Pirie’s team used Space, the

ObjectSpace scalable group communica-
tion medium that came bundled with
Voyager Professional Edition.

Summary
For Global Mobility Systems, choosing

the right Java platform shortened time to
market by 30%, reduced development costs
and made major
positive impacts on
the feature set, per-
formance, flexibility
and ease of mainte-
nance of the com-
pany’s products.

“A pure Java
platform makes a
lot of sense because
unlike other plat-
forms, it fulfills the
promise of Java by leveraging the vast
power of Java’s dynamic capabilities. These
enable a pure Java platform to interoperate
with popular ORBs, allow dramatic reduc-
tions in manual coding, enable more
advanced features in the solution and free
developers to focus on their main mission –
building and perfecting a solution without
having to devote time and effort to building
a distributed infrastructure,” said David
Norris, president and CEO of ObjectSpace.

As a result, Global Mobility has gained a
number of strategic advantages, differenti-
ating itself from competitors and position-
ing the company for future product
enhancement and expansion in a fast-mov-
ing market.

Platform Strategy cont.

• Provide an accelerated, optimized ORB
• Translate directly into a specific mes-

saging protocol such as IIOP at mes-
sage invocation (plus asynchronous,
synchronous and one-way message
delivery)

• Include publish/subscribe and mes-
sage multicast

• Allow multicasting via regular Java
syntax

• Offer distributed services such as fed-
erated directory service

Functionality
An appropriate infrastructure trans-

forms dynamic capabilities implicit in
Java into powerful, explicit features for
speeding and enhancing enterprise solu-
tions. Examples include integrating
objects with legacy databases without
modifying the objects, and remotely
automating garbage collection on VMs
across the enterprise. A dynamic plat-
form should:

• Provide 100% Pure Java for “write
once, run anywhere” portability

• Include an activation framework for
database integration

• Allow remote class loading via an inte-
grated HTTP server

• Include an integrated router, allowing
applets to communicate with arbitrary
servers

• Offer a robust security manager
• Support pluggable transport layers

such as UDP and SSL
• Provide distributed garbage collection

Flexibility
A competitive enterprise must gener-

ate a rapid, efficient response to any shift
in a fast-changing business environment.
Because enterprise systems support vir-
tually all business processes, the critical
success factor becomes the speed and
ease with which systems can be modi-
fied. The same capabilities that enable a
dynamic Java infrastructure to shorten
time-to-market also shorten the “time-
to-change,” making the entire enterprise

more flexible in responding to business
and technology changes. To accomplish
this, the platform should:
• Support third-party messaging proto-

cols and multiple transport layers
• Provide pluggable resource loaders for

flexible remote class loading
• Dynamically support multiple distrib-

uted object models
• Readily scale to enterprise applica-

tions and embedded solutions

Leading Edge
Extending an object’s behavior at run-

time opens the door to innovations that
make distributed solutions even more
robust – ultimately delivering greater
value to users of applications across the
enterprise. For example, a robust plat-
form should:
• Create mobile autonomous agents –

objects that continue to execute as
they move themselves between VMs

• Allow an object’s functionality to be
dynamically aggregated, i.e., extended
at runtime (complements inheritance.)

David Norris, president
and CEO of ObjectSpace

41VOLUME: 3 ISSUE: 12 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Sales Vision
www.salesvision.com

42 • VOLUME: 3 ISSUE: 12 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Cold Fusion
Developer’s

Journal

PowerBuilder
Developer’s Journal

Secrets of the
PowerBuilder

Masters

PowerBuilder
Essentials

43VOLUME: 3 ISSUE: 12 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

ObjectSpace has made a
name for themselves in
distributed computing
over the past few years.
They recently announced

that Sun Microsystems
had licensed ObjectSpace’s

JGL technology (a toolkit for
building and managing collections) for inte-
gration with Sun’s own JavaBlend technology.
ObjectSpace has followed up with the release
of their VoyagerPro 2.0 product, and I had the
opportunity to work with a prerelease of the
software.

Product Installation
The product ships on CD-ROM and is also

available for download from ObjectSpace’s
Web site in a variety of formats. The CD-ROM
version installs via InstallShield, and I had it
installed under Windows NT and configured
in a matter of minutes. A complete installa-
tion takes a little over 4 MB of disk space and
doesn’t require a system reboot. You need
version 1.1 of the JDK on your machine to
work with VoyagerPro. The software, written
in Java, will run on any platform that sup-
ports a JDK 1.1 VM.

VoyagerPro Features
The VoyagerPro product, which is aimed

at the professional developer marketplace,
comes with a number of features aimed at
providing distributed computing capabilities
for your Java applications. The folks at
ObjectSpace have bundled a lot of functional-
ity into this product, and it’s impossible to
adequately cover all its capabilities here.

One impressive feature is a technology
that ObjectSpace calls Dynamic Aggregation.
It’s particularly powerful in that it allows the
developer to add functionality to third-party
components, even if you don’t have the
source code for that component. Dynamic
Aggregation goes beyond what inheritance
and polymorphism provide for the object
developer, as it allows the developer to attach

secondary objects (which ObjectSpace refers
to as facets) to a primary object at runtime.
The primary class doesn’t have to be related
in any way to the facet class, and you don’t
have to modify the class files of either object.
VoyagerPro includes additional facilities for
remote-enabling classes, synchronous and
asynchronous messaging, CORBA translation
and even mobile agents that can move them-
selves between programs.

VoyagerPro also features nice facilities for
building multicast and publish/subscribe
applications. It allows you to specify distrib-
uted containers, called Spaces, that can span
programs. Multicast messages can be propa-
gated automatically between the subspaces
within a space, and VoyagerPro detects when
duplicate messages are received.

The ObjectSpace team assumes that Voy-
agerPro will be used by experienced Java
developers, so the examples are almost
always short, direct and to the point. Object-
Space includes sample code for all of the
product’s features, including Dynamic Aggre-
gation. I built and ran the example aggrega-
tion code for employees and accounts with-
out difficulty. I find it much easier to work
with this type of example code.

VoyagerPro Components
VoyagerPro is packaged with a set of four

utility programs and a Java archive of the Voy-
agerPro classes. The IGEN utility is used to
generate an interface for your specified class
file. You’re allowed to specify the Java
intepreter that will be called by IGEN, and the
result of running IGEN will include all of the
public methods for your specified class hier-
archy. The CGEN, or code generator, gener-
ates IDL from Java files and Java from IDL files,
allowing you easy access to CORBA from the
Java language. Although VoyagerPro supports
dynamic proxy generation, it also includes the
PGEN utility for manual proxy generation
when performance requirements or postpro-
cessing needs justify the use of manual prox-
ies. The main utility is the Voyager program

itself, with the VoyagerPro development serv-
er and ORB. The Voyager server uses a small
footprint and includes its own HTTP listener
for serving classes to other remote Voyager
servers. Voyager is completely managed from
the system command line, and any settings or
parameters you wish to supply are passed on
to the command line in a format familiar to
UNIX programmers. The combination of the
Voyager server and the VoyagerPro classes
makes it easy to deploy a multitier application
with a minimum of clutter. Although the Voy-
ager server supports many common applica-
tion server features such as logging, class
loading at startup, listener port and Java
intepreter parameters, the server itself offers
a bare-bones interface. I was impressed with
how quickly I could remote-enable Voyager-
Pro’s example code.

VoyagerPro also includes an activation
framework that allows objects to be persisted
into a database without having to modify the
object’s class. I’d recommend VoyagerPro to
developers who are looking to add powerful
functionality to their Java applications using a
simple, standards-neutral interface. Book-
mark ObjectSpace’s Web site, as they have
recently announced some VoyagerPro add-
ons in the form of transaction services, secu-
rity services and Enterprise JavaBeans.

About the Author
Jim Milbery, an independent software consultant
based in Easton, Pennsylvania, has over 15
years of experience in application development
and relational databases. You can reach him
at jmilbery@milbery.com or via his Web site at
www.milbery.com.

PRODUCT REVIEW

VoyagerPro 2.0
by ObjectSpace

A 100% Pure Java development platform
and ORB for distributed computing

by Jim Milbery

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼

VoyagerPro 2.0
ObjectSpace, Inc.
14850 Quorum Drive, Suite 500
Dallas, TX 75240
Phone: 800 OBJECT-1
Web: www.objectspace.com
Minimum Requirements: JVM with support for JDK
1.1 (Windows 95/NT, Macintosh, UNIX)

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

www.milbery.com

44 • VOLUME: 3 ISSUE: 12 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

The world of software programming is
replete with alternative tools for writing
code that can be used to provide the same
solutions to the same problems. The range
of programming aids available, and their
disparate approaches, make ubiquity and
platform neutrality a myth. Nowadays,
someone who says that the Z80 assembly
language is also a programming language
will be shot down with a barrage of e-mail
arrows fired by technical gurus. I think the
only absolutely platform-independent, lan-
guage-neutral, ubiquitous truth is that
everything ultimately translates into a
sequence of zeros and ones.

In the world of programming languages,
the kingdom of “high-level programming” is
shared by two types of languages: system
programming languages and scripting lan-
guages. High-level languages such as C++,
Java, Smalltalk and Pascal basically
abstract programmers from the low-level,
machine-specific programming details
required in assembly programming. System
programming languages and assembly lan-
guages have the same purpose: to develop
applications directly using system
resources. Scripting languages on the other
hand supplement system programming lan-
guages by providing “glue-code” to inte-
grate components written in other lan-
guages (usually system programming lan-
guages). Applications and components
written in system programming languages
can be glued together for quick prototyp-
ing, configuration and deployment using
scripting languages.

The Cosmic Cup’s purpose is to allow
true believers to peer into the different
facets and pieces of the Java Platform. The
platform would be incomplete without
scripting language support. As the Java pro-
gramming language gained popularity, two
kinds of evolutions took place in the world
of scripting languages. The first involved
the inception of new languages that facili-
tated the integration of Java into the Web –
more specifically into HTML. The other
involved the enhancement of existing
scripting languages that added Java sup-
port to their existing codebase. These

scripting languages differ from the former
in that they have a substantial presence
outside the Internet. The languages in this
category enhanced their features and pro-
vided hooks to integrate components from
non-Java environments to components
developed in Java.

This month we’ll take a look at the Java
support provided by five popular scripting
languages:
• Tcl
• Python
• JavaScript
• JScript
• VBScript

Of these, the first two provide enhance-
ments to existing languages; the other three
are primarily HTML-based scripting lan-
guages. Our discussion will focus primarily
on the three languages in the first category.

The role of these languages in Java-
based development is illustrated in Figure
1, and brief descriptions are provided in
Table 1. The remainder of this column
describes these scripting languages in
more detail.

Tcl/Tk
Tcl, built on the C environment, is an

ideal scripting language for embedding into
other applications. It focuses on small
scripts, rapid application development and
dynamic environments. Started in 1990 as a
research project at the University of Cali-
fornia, Berkeley, by John Ousterhout, it has
been supported informally by Sun since
1994. It is available on popular computing
hardware platforms (UNIX, Windows, Mac-
intosh) and is used by about half a million
programmers.

A salient aspect of Tcl is that it can be
treated as a library and easily embedded in
existing Java applications. Java developers
can use this functionality as a means to
wrap existing legacy components into their
Java applications. It can also be used as the
glue that ties together components devel-
oped in Java, adding flexibility, dynamism
and rapid integration to the development
process.

Tk is Tcl’s toolkit of widgets, graphical
objects similar to those of other GUI tool-
kits such as Xlib, Xview and Motif. Tk can
be used to create prototype GUIs with the
Tcl scripting language.

The Tcl-Java integration effort involves
development in the following areas that

Focus: The Java Scripts

COSMIC CUP

by Ajit Sagar

They’re easy to use…and what’s more, they’re free!

The Java Programming Language

Scripting Languages
(Tcl/Tk, Jacl, JPython)

Integrated Java Applications

Java Applications & Components

Figure 1: The role of scripting languages in Java application integration

45VOLUME: 3 ISSUE: 12 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

The Object People
www.objectpeople.com

46 • VOLUME: 3 ISSUE: 12 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

add functionality to different facets of the
Java Platform:
• TclBlend – A new package for Tcl that

allows Tcl applications to load and inter-
act with the Java Virtual Machine. This
allows developers to use Java objects in
their existing legacy code. The final 1.0
release is available for Solaris and NT and
uses Tcl 8.0 with JDK 1.1.

• Jacl – Tcl’s 100% Java solution, the objec-
tive and result of Tcl’s port to the JVM.
The Jacl effort involves porting the entire
Tcl and Tk code to the Java programming
language, thus providing a Pure Java
solution that includes a system program-
ming language with tightly integrated
scripting support. Currently, the core of
the Tcl language is being ported. The Tk
widgets are being wrapped into Java-
Beans to reuse existing code. (Jacl does-
n’t yet have applet support, i.e., it doesn’t
run in browsers.)

• Tcl Bean – A JavaBean built for Java Stu-
dio – Sun Microsystems’ Java IDE – is
used to create ports and generate mes-
sages via the studio package. Java Studio
uses ports to graphically represent Java-
Bean events.

Sun recently created a new business
unit, Sunscript, which has evolved into a
company called Scriptics, the official owner
of Tcl/Tk. Detailed information on the Tcl-
Java integration is available at www.scrip-
tics.com/java.

Python
Python is a portable, interpreted,

object-oriented programming language
that incorporates modules, exceptions,
dynamic typing, high-level dynamic data
types and classes. Created in 1990 by
Guido van Rossum, it’s currently distrib-
uted freely, and is maintained by an infor-
mal development organization called the
Python Software Activity, or PSA, which
houses a large developer community.
Python’s syntax is closer to traditional
programming languages such as C. It may
be used for rapid prototyping as well as for
medium- to large-scale systems develop-
ment.

JPython is a new implementation of
Python integrated with the Java Platform.
Recently certified as 100% Pure Java by
KeyLabs, it consists of a compiler that
translates Python source code into Java
bytecodes that can run directly on a JVM,
a set of support libraries used by the com-
piled Java bytecodes and extra support
for using Java packages from within
JPython.

JPython enhances the functionality of
Java programs by providing programmers
with a rapid application development envi-

ronment for integrating Java components.
Java programmers can add the JPython
libraries to their system to allow end users
to write simple or complicated scripts that
add functionality to an application. JPython
has an interactive interpreter that allows
dynamic interaction with Java packages or
Java applications.

As JPython is written in Java, interoper-
ability between the two languages is more
intuitive. JPython provides the following
functionality to the Java programming lan-
guage:
• Dynamic compilation of “glue-code” writ-

ten in JPython to Java bytecodes. This
makes the executable code available to
all platforms that support the JVM.

• Inheritance capability that allows JPython
code to extend Java classes. Thus imple-
mentation of abstract classes defined in a
Java program may be provided by the
scripting code.

• Support for the JavaBeans component
model. JPython uses JavaBean properties
that make it easier to interact with most
Java classes. These properties can be
used as normal object attributes, and can
also be specified to the class constructor
as keyword arguments. JPython uses
Java’s Introspection mechanism to
achieve this.

Detailed information on JPython is avail-
able at www.python.org/jpython.

Web Scripting Languages
The remainder of this article focuses on

the three HTML-based scripting languages
listed earlier. The sole purpose of these
languages is to enhance the content of
Web pages displayed by Web browsers. In
the current Internet world “Web pages”

inherently implies HTML authoring. The
languages discussed below allow the pro-
grammer to add sophisticated Web con-
tent to Web pages, and to support object
orientation and the capability of embed-
ding programming language components
into Web pages. In other words, the Web
scripting languages provide “glue-code”
for Internet (or intranet) Web pages. This
aspect makes the scripting language
dependent on the Web browser that dis-
plays the Web page. The browser should
be able to recognize the tags for a particu-
lar language. If it doesn’t, all code between
the open and close tags (the code provid-
ed for the respective scripting language)
will be ignored.

The scripting language code is embed-
ded in the HTML page as follows:

<HTML>
…………
<SCRIPT LANGUAGE = “[language]” >
[Scripting Code]

</SCRIPT>
…………
</HTML>

The “[language]” string could be
“JavaScript,” “VBScript,” “JScript,” etc.

I’ll provide very brief descriptions of
these scripting languages as there are
ample sources of information that discuss
them in detail.

JavaScript
JavaScript provides object-based inter-

preted scripting that is embedded in HTML
pages. Originally developed by Netscape as
“LiveScript,” Netscape and Sun Microsys-
tems entered into an agreement to jointly
enhance the language in December 1995.

Scripting
Language Description Type

Tcl A scripting language ideal for embedding into other Independant scripting
applications that focuses on small scripts, rapid applications
application dvelopment and dynamic environments

Python A portable, interpreted, object-oriented scripting Independant scripting
language that incoporates modules, exceptions, dynamic applications
typing, high-level dynamic data types and classes

JavaScript An object-based interpreted scripting language that is HTML support
embedded in HTML pages

JScript Microsoft’s implementation of JavaScript that adds HTML support
support specific to Internet Explorer

VBScript A subset of the Microsoft Visual basic programming HTML support
language that offers a lightweight interpreter for use in
World Wide Web browsers

Table 1: Scripting languages

47VOLUME: 3 ISSUE: 12 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

The name was changed to JavaScript as the
addition of Java support was the main
aspect of the enhancement.

JavaScript syntax is similar to that of the
Java programming language. It also uses
elements from the Awk and Perl scripting
languages, and its object-based nature can
be attributed to the object prototype sys-
tem used in the Self language. JavaScript is
supported by Netscape Navigator versions
2.0+ and Microsoft Internet Explorer.

JavaScript also has a server-side compo-
nent, LiveWire, which contains server-side
Java code and extensions to the client-side
JavaScript. This code is compiled into Java
bytecodes and can be used as an alterna-
tive to CGI. Since the 1.2 release of
JavaScript, the client- and server-side ver-
sions have been consolidated into a single
technology supported by Netscape Com-
municator 4.0 and Netscape’s Enterprise
Server.

Detailed information on JavaScript is
available at http://developer.netscape.
com/openstudio/tech/index_frame.html.

JScript
JScript, Microsoft’s implementation of

JavaScript, adds support specific to its
Internet Explorer browser. Like JavaScript,
JScript allows developers to link and auto-
mate objects in Web pages, including

ActiveX controls and Java Applets. JScript
is supported in both Netscape and
Microsoft browsers. Some of its key fea-
tures are dynamic redefinition of the exe-
cuting program, object-based support,
DHTML support, a rich support for regular
expressions and the capability to immedi-
ately evaluate code at runtime.

More information on JScript is available at
www.microsoft.com/workshop/languages/cli-
nic/vbsvjs.asp.

VBScript
A subset of Microsoft’s Visual Basic pro-

gramming language, VBScript offers a light-
weight interpreter for use in World Wide
Web browsers, and other applications such
as ActiveX controls, Automation servers
and Java Applets. The main features of
VBScript are:
• It adds Web development capabilities to

the client and server.
• It brings a useful scripting language to

the Web.
• It expands the scope of the Visual Basic

programming languages to platforms not
covered by either Visual Basic or Visual
Basic for Applications.

More information on JavaScript is avail-
able at www.microsoft.com/workshop/lan-
guages/clinic/vbsvjs.asp.

Cosmic Reflections
System programming languages and

scripting languages try to address appli-
cation development in their own way.
The scopes of programming covered by
these languages usually overlap. Though
they supplement each other, they also
compete with each other. The main
attraction of scripting languages is their
ease of use and their extremely rapid
development. Furthermore, they’re free.
Developers need to carefully consider
the roles and division of responsibilities
they want to assign to the chosen script-
ing language when they are architecting
enterprise-level applications. Recent
developments and the direction of the
popular scripting languages seem to
indicate that the Java Platform is not just
Java.

About the Author
Ajit Sagar is a member of the technical staff at
i2 Technologies in Dallas, Texas. He holds a
BS in electrical engineering from BITS Pilani,
India, and an MS in computer science from
Mississippi State University. He is a Java certified
programmer with eight years of programming
experience, including two in Java. Ajit can be
reached at Ajit_Sagar@i2.com.

Ajit_Sagar@i2.com

Snowbound Software
www.snowbnd.com

48 • VOLUME: 3 ISSUE: 12 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Object-oriented developers who move
from C++ to Java miss the preprocessor
capability of C++. That capability allows
them to include and exclude debug code
easily simply by changing the compiler
switches in the development and release
versions of the application. But Java’s lack of
preprocessor capability doesn’t mean you
can’t incorporate debug code in your Java
programs. Some developers have come up
with the idea of using debug and nondebug
packages conditionally to mimic the condi-
tional compilation available in the C++ pre-
processor.

The downside of this approach is that you
have to implement the same debug class
twice: once for development, then again for
release. The development version of the
debug class will have debug statements
implemented in every method; the state-
ments will be removed in the release version.
The implication of maintaining the same
class with different implementation in two
places is that managing changes in the debug
class can be tedious and error-prone. Even
worse, every package using the debug class
will have to be modified to include the corre-
sponding package – a daunting task in itself.

This article presents a cleaner solution
for inserting the debug code into your Java
applications by taking advantage of Java’s
dynamic class loading during development.
Using this technique, debug code is written
only once. Also, because there’s only one
version of the code, using out-of-sync debug
classes is no longer a problem. Moreover, the
requirement for changing the import state-
ments for including the correct debug pack-
ages before releasing the program is com-
pletely eliminated, which saves significant
development time by avoiding retesting.

Note: Although the technique can be
applied to both Java 1.0 and 1.1 versions, the
examples in this article utilize the Class Lit-
erals introduced in Java 1.1, which makes
the examples simpler and safer than if they
were written in Java 1.0.

Implementing Java Debug Code
Most Java developers with a C++ back-

ground have a hard time learning not to use

the C++ preprocessor when writing Java
applications. You might have heard that in
Java you can obtain the effects of most C++
preprocessor features by using Java lan-
guage elements, i.e., constants in place of
#defines. You declare classes in place of
#typedefs. Because Java supports platform
portability natively, you don’t need condi-
tional compilation.

Unfortunately, although Java designers
have managed to leave out most of the
unnecessarily complicated language ele-
ments in C++, the removal of conditional
compilation also eliminated a common and
valuable use it provided – debug code. Thus

the need for ways to place and remove
debug code in the development and release
versions of Java applications.

The conditional debug packages tech-
nique requires substantial effort to fix up the
code before shipping the Java application.
The new technique, which uses Java’s
dynamic class loading, requires no effort. To
illustrate and compare the two techniques,
we’ll show you the Java version of C++ asser-
tion using both techniques. First, let’s see
how the conditional debug packages tech-
nique works.

Conditional Debug Packages
Technique

This technique requires two classes with
identical class names and interfaces: one
used during development, the other for

TESTING FOCUS

Dynamic Java Debug Code
It may be a little slow, but this new technique means
less development overhead and better coding style

by Joe Chou

Rapid Testing Is
Crucial to Java

Developers’ Edge
By Diane Hagglund

In practice, Java’s promise of “write once,
run everywhere” has really meant “write once,
test everywhere.” The need for testing in dif-
ferent environments occurs not only across dif-
ferent platforms, but also between the various
browsers, virtual machines and releases of the
JDK.

One of the primary reasons for developing
with Java is achieving the time-to-market
advantage vital for enterprise applications like
those at NationsBank. The process for testing
Java applications has to be equally rapid or the
time-to-market advantage is lost.

Integrated functional testing, load testing
and test management tools are crucial for test-
ing Java-based applications. Information ser-
vices organizations need a complete solution
for testing the functionality of Java clients, end-
to-end load testing of multitier applications and
managing the increased volume of testing
across all environments. As a further complica-
tion, many applications will have a combination
of traditional and Java clients for the foresee-

able future. Therefore, not only do the testing
tools have to work across all Java-specific envi-
ronments, they also have to work across both
Java and traditional clients.

The cross-platform combinations possi-
ble with Java can greatly add to test prepa-
ration and analysis time. If an enterprise
uses Solaris, HP, Windows NT and
Windows 95, there are four
different operating systems.
Add Internet Explorer and
Navigator browsers on each
platform, and there are now eight
different environments that
require testing. There is also a
host of different windowing
toolkits, including AWT, JFC,
Café and others. It would be
arduous to require the recording
of the same script on the dozen or
more combinations of these compo-
nents. A single test script should
work with any mixture. The testing
tool should be able to centrally exe-
cute tests on any of these platforms
and automatically collate results in a
central repository.

In addition to testing the different client
combinations as efficiently as possible, testing

“Write Once,Test Everywhere”

TE
ST

IN
G

 F
O

C
U

S
TE

ST
IN

G
 F

O
C
U

S
TE

ST
IN

G
 F

O
C
U

S

49VOLUME: 3 ISSUE: 12 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

release. The only differences between the
two classes are the packages the classes are
in and the classes’ method implementation.
In my example the development class is
located in the debug package and the
release class is stored in the tools package.
You’re free to name the two packages, of
course, as long as the names are meaningful
and short. You’ll implement the methods of
the development class but keep the meth-
ods in the release class empty.

Now we’re ready to implement the Java ver-
sion of C++ assertion using the conditional
debug packages technique. We’ll name the
debug class CondDebug. For efficiency we’ll
define the class as final since you won’t nor-
mally want to extend a class that’ll be used
only for debugging code. For ease of use we
define the two overloaded assert methods as
static and disallow the instantiation of Cond-
Debug class by making its constructor private.

Listing 1 shows the development version
of CondDebug class. A CondAssertException
class is thrown to stop the application if the
condition passed in the assert method is
false. Listing 2 shows the CondAssertExcep-
tion class. If you look at the code closely,
you’ll notice that CondAssertException class
is a subclass of RuntimeException instead of

Exception. There are two reasons for this: (1)
the CondAssertException will not be caught
in the code because it will be used strictly to
stop the execution of the program, and (2)
you don’t want to declare a throws clause for
every method calling the assert method.
Since the CondAssertException class doesn’t
require enforcing Exceptions, it makes sense
for the CondAssertException to be a sub-
class of RuntimeException.

Listing 3 shows the release version of the
CondDebug class included in the tools pack-
age. As you can see, the only difference
between this class and the one in the debug
package is that assert methods in this class are
empty. This way, the release version of the
application will simply pass through the assert
method, causing little performance penalty in
the overall program execution. We’ll examine
the performance issue later in this article.

Listing 4 shows an example, TestCondDe-
bug class, of how you can use the different
versions of the CondDebug class by manual-
ly modifying the package being imported.
Note that the main method catches both
CondAssertExceptions so the first Cond-
AssertException won’t exit the program.
This way, the second assert method can be
tested without rerunning TestCondDebug.

This will be the only case where CondAssert-
Exception is caught when testing CondDe-
bug and CondAssertException itself.

The conditional debug packages tech-
nique has three disadvantages:
1. Developers will have to manually main-

tain two copies of the debug classes that
can’t be checked with the help of the
Java compiler.

2. Import statements in classes that use the
debug classes will have to be changed
before the code is ready for shipping.
This poses no problem for a small Java
program, but for a large Java program
that consists of hundreds of classes, a
script will have to be written to automate
the process. This script will then have to
be maintained to keep up with new debug
classes introduced during development.

3. Because of the amount of code changes
required at the end of product develop-
ment, a full regression test must be per-
formed to ensure that the release version
of the application contains no new defects
introduced by the code changes. This test,
performed at the last minute of a product
cycle, is simply unnecessary and costly.

Dynamically Loading Debug
Classes Technique

In the section above you read about the
conditional debug packages technique and
learned about its drawbacks. So the ques-
tion is: How do we remove the tedious and
error-prone code changes and still have
access to the debug code only when we
need it? The answer lies in one of the pow-
erful Java features – dynamic class loading.

With Java’s dynamic class loading we can
determine when to load the debug class at
runtime. Because we can load the class when-
ever we wish, we can load it only when the
program is run in a development environ-
ment. The program will know whether it is run
in a development or release environment by
checking for the presence of the debug class,
which is removed in the release version of the
application. By encapsulating debug methods
in a debug class and applying Java’s dynamic
class loading, we can now load the debug
class and execute its methods once the class
is found. Only when the debug class is suc-
cessfully loaded from CLASSPATH will its
methods be executed. Consequently, simply
adding and removing the debug class from the
Java packages controls the use of the meth-
ods in the debug class. With this in mind, I’ll
show you how to implement the technique of
dynamically loading debug classes.

Although you can call a debug class
method from anywhere in your program,
you might find it easier to manage if you
add a layer between the calling class and
the debug class itself. In other words,
adding a wrapper class that transparently

tools need to facilitate the testing of the com-
plex architectures that include HTTP, CORBA,
DCOM and other technologies. Software flaws,
CPU limitations or network problems in any tier
of a multitier application can slow the response
of the entire system. Some Java application
server products allow dynamic configuration of
software and hardware resources, so testing
tools must be independent of rigid configura-
tions. Moreover, test engineers need the
ability to flexibly specify the measurement of

different events so they can isolate the perfor-
mance of different system components. In load
testing, centralized results become extremely
important for tracking improvements from per-

formance optimization and detecting the
appearance of bottlenecks.

Mercury Interactive, a leader in
enterprise application testing solu-
tions, provides comprehensive
functional testing, load testing and
test management for Java-based
applications using proven technolo-

gies based on the company’s
client/server test suite: Win-

Runner and XRunner for
functional testing, Load-
Runner for load testing and
TestDirector for test man-

agement.
Mercury Interactive’s inte-

grated solution offers comprehen-
sive testing across the wide range of platforms,

browsers and architectures inherent in Java
implementations with the ability to reuse test
scripts across different browsers, platforms and
JavaBeans shared between Java and traditional
clients and even used for load testing. For
example, users can develop a WinRunner test
with Microsoft Internet Explorer on Windows
95 and run it without any changes with
Netscape Navigator on Solaris. This same script
can then be used again for load testing on Win-
dows NT.

LoadRunner provides a scalable load-testing
solution for Java with the ability to run hun-
dreds of virtual users, applets and virtual
machines on a single box. Using LoadRunner,
customers can exercise their n-tier Java system
just as in production, to identify performance
and capacity problems prior to deployment.

Mercury Interactive’s Java solution supports
major Java toolkits, including Sun’s AWT, Ora-
cle’s Developer/2000, Sun’s JFC, Symantec’s
Visual Café and others - with a single environ-
ment that works with any mixture of these Java
objects. In addition, users can take advantage of
Java’s flexibility with Mercury Interactive’s
open API to test any custom-built Java objects.

The complexity of Java client configuration
along with that of emerging application archi-
tectures makes effective functional and load
testing very important. Being able to complete
these tests fast enough to preserve the time-
to-market advantage of Java client distribu-
tion is a must.

TESTIN
G

 FO
C
U

S
TESTIN

G
 FO

C
U

S
TESTIN

G
 FO

C
U

S

50 • VOLUME: 3 ISSUE: 12 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

encloses the debug class will consolidate
all possible changes in one place and mini-
mize the impact of the code changes. In the
assert example we’ll call the wrapper class
JDebug (Listing 5) and include it in the
tools package. We’ll call the debug class
Debug (Listing 6) and include it in the
debug package.

JDebug class will have the same interface
as the Debug class, with the addition of debu-
gLoaded method. This method will be called
in JDebug’s debug method to determine
whether to call the corresponding method in
Debug class, based on the return value of
debugLoaded method. You’ll have to include
debugLoaded method in every wrapper class
if you declare the wrapper class final, as in the
example, which will speed up the execution
time of the program. If you want to take advan-
tage of Java’s inheritance and don’t mind hav-
ing a small performance penalty in your appli-
cation, you could create a base debug class
containing this protected debugLoaded
method. This would allow you to extend the
base debug class without worrying about
copying and pasting the same method over to
your new wrapper class. This decision can be
made on a project-by-project basis.

In JDebug’s debugLoaded method we
don’t handle any of the exceptions that are
thrown if Debug class can’t be found. This way
nothing will show up in the release version of

the application. However, we do print out a
message (*** Debug On ***) when the code
runs during development to indicate the cur-
rent status. With this message, test engineers
can write a simple test to ensure that the
release image of the application does not con-
tain the unwanted Debug class. If you com-
pare the testing effort of the new technique
with the full regression required by the condi-
tional debug packages technique, you can see
how much development time can be saved.

Now that you’ve learned how the dynam-
ically loading debug classes technique
works, it’s easy to apply it to other debug
methods you might want to add. As an
example, I’ve included three new methods,
printStackTrace, memoryInfo and print-
TimeDff, in both JDebug and Debug classes.
As the code explains what they do, I won’t go
into detail here. You can look at JDebug’s
main method to get some idea of how they
can be applied to your programs.

The dynamically loading debug classes
technique eliminates the three disadvantages
of the conditional debug packages technique
and instead offers the following advantages:
1. You don’t have to manually maintain two

copies of the debug classes.
2. You can switch from development to pro-

duction simply by removing Debug class
from CLASSPATH.

3. You don’t have to change a single line of

code to release the application because
the debug classes are dynamically loaded
when they exist.

4. You don’t have to retest your code, saving
significant delay in the application’s time
to market, because there are no code
changes.

Only one disadvantage is associated with
this technique: the extra conditional code
that checks for the existence of Debug class
will have to be included in the release ver-
sion of the application, which will slightly
affect its performance. How much slower
will the application actually be?

Performance Issue
Because we add the code to load Debug

class the first time the class’s debug method
is called, as well as to test the existence of
Debug in every method in JDebug class, it’s
evident that some performance penalties
might be associated with the additional code.
We’ve written ProfileCondDebug and Profile-
DynamicDebug classes to measure exactly
how much time is required to run the addi-
tional code. In both classes we measure the
time needed to call the assert method 10 mil-
lion times: 109 ms for the CondDebug.assert
method and 1,109 ms for the Debug.assert
method on a Pentium 200 MHz machine run-
ning JDK 1.1.6 on Windows NT 4.0.

TE
ST

IN
G

 F
O

C
U

S
TE

ST
IN

G
 F

O
C
U

S

Wall Street
Wise

Software
www.wallstreetwise.com/spell.htm

LPC
Consulting

www.ilap.com/lpc

http://www.JavaDevelopersJournal.com 51Java DEVELOPER’S JournalVOLUME 3 ISSUE 10 •

Even though the Debug.assert method runs
about 10 times more slowly than the CondDe-
bug.assert method, each Debug.assert method
still takes only 0.11 µs. In other words, you can
afford to execute Debug.assert method 10 thou-
sand times and it will slow down the particular
operation for only 1.1 ms in the machine setup
we have, which should be more than accept-
able in most Java applications.

In a time-critical application, however,
and especially in a routine that will be used
many times in the application, adding debug
code that will slow down the application
even a little bit isn’t acceptable. Does that
mean you can’t use this technique in such
applications? No. There are still ways to
apply debug code in such a situation. Before
you release your time-critical application,
run it with a profiling tool and identify the
routines that take a large share of the run-
time. Remove the debug code completely
from those routines and you’re done. If this
still doesn’t satisfy your need for speed, then
you might have used the wrong language in
developing your application. In this case C++,
or maybe even Assembly, would probably be
a better choice than Java.

Listing 7 lists ProfileCondDebug class and
Listing 8 shows ProfileDynamicDebug class.

Conclusion
The dynamically loading debug classes

technique is slower than the conditional
debug packages technique, but as we’ve
demonstrated, the new technique offers less
development overhead than the conditional
debug packages technique – yet provides
much better coding style in terms of both
maintainability and readability. If your appli-
cation’s performance is very important to its
user, you might consider removing all your
debug code from time-critical routines before
the application is shipped to customers.

This article shows only one way to
exploit Java’s capability to load classes
dynamically. I believe you’ll come up with
ideas even better than mine. Don’t forget to
let us know!

About the Author
Joe Chou has been testing and developing software
in Silicon Valley for nine years. Joe first studied C++,
later worked with Delphi and now enjoys writing
applications in Java at IBM in San Jose, California.
He is always searching for creative design and prac-
tical techniques in software development. You can
reach him at joechou@compuserve.com.

Jinfonet
www.jinfonet.com

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

joechou@compuserve.com

S
Y
S

-C

ON RADIO

w
ww.sys-c

o
n
.c

o
m

Java Business Expo &
Java Developer’s Journal

Award Ceremony

Tune
in for LIVE

coverage of…

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
Readers’

CHOICE
 AWARD

SY
S-C

ON
 RA

DI
O

Only from…
SYS-CON
PUBLICATIONS

52 • VOLUME: 3 ISSUE: 12 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Java Developer’s
Journal

www.JavaDeveloper’sJournal.com

53VOLUME: 3 ISSUE: 12 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Java Developer’s
Journal

www.JavaDeveloper’sJournal.com

54 • VOLUME: 3 ISSUE: 12 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Most programs use data in one form or
another – as input, output or both. The
sources of input and output can vary from a
local file to a socket on the network, a data-
base, in memory or another program. Even
the type of data can vary from objects and
characters to multimedia and more.

The APIs Java provides for reading and
writing streams of data have been part of the
core Java Development Kit since version 1.0,
but they’re often overshadowed by the bet-
ter known JavaBeans, JFC, RMI, JDBC and
others. However, input and output streams
are the backbone of the Java APIs, and under-
standing them is not only crucial but can also
make programming with them a lot of fun.

In this article we’ll cover the fundamen-
tals of I/O streams by looking at the various
stream classes and covering the concept of
stream chaining. Next month we’ll look at
some example uses of I/O streams.

Overview
To bring data into a program, a Java pro-

gram opens a stream to a data source – such
as a file or remote socket – and reads the infor-
mation serially. On the flip side a program can
open a stream to a data source and write to it
in serial fashion. Whether you’re reading from
a file or from a socket, the concept of serially
reading from, and writing to, different data
sources is the same. For that very reason,
once you understand the top-level classes
(java.io.Reader, java.io.Writer), the remaining
classes are a breeze to work with.

Character versus Byte Streams
Prior to JDK 1.1, the input and output

classes (mostly found in the java.io package)
supported only 8-bit "byte"
streams. In JDK 1.1 the concept of 16-bit Uni-
code "character" streams was
introduced. While the byte streams were sup-
ported via the java.io.InputStream and
java.io.OutputStream classes and their sub-
classes, character streams are implemented
by the java.io.Reader and java.io.Writer
classes and their subclasses.

Most of the functionality available for byte

streams is also provided for character
streams. The methods for character streams
generally accept parameters of data type
"char" parameters, while
"byte" streams – you guessed it –
work with "byte" data types. The
names of the methods in both sets of classes
are almost identical except for the suffix; that
is, character-stream classes end with the suf-
fix Reader or Writer and byte-stream classes
end with the suffix InputStream and Output-
Stream. For example, to read files using char-
acter streams, you’d use the java.io.FileRead-
er class; to read using byte streams you’d use
java.io.FileInputStream.

Unless you’re working with binary data
such as image and sound files, you should
use readers and writers to read and write
information for the following three reasons:
1. They can handle any character in the Uni-

code character set (the byte streams are
limited to ISO-Latin-18-bit bytes).

2. Programs that use character streams are
easier to internationalize because they’re
not dependent upon a specific character
encoding.

3. Character streams use buffering techniques
internally and are therefore potentially
much more efficient than byte streams.

To bridge the gap between the byte and
character-stream classes, Java provides the
java.io.InputStreamReader and java.io.Out-
putStreamWriter classes. The only purpose
of these classes is to convert byte data into
character-based data according to a speci-
fied (or the platform default) encoding. For
example, the static data member
"in" in the "System"
class is essentially a handle to the Standard
Input (stdin) device. If you wanted to
"wrap" this inside the
java.io.BufferedReader class that works with
character streams, you’d use InputStream-
Reader class as follows:

BufferedReader in = new BufferedReader(new
InputStreamReader(System.in));

For JDK 1.0 Versions
If you can’t use JDK 1.1, perhaps because

you’re developing applets for older
browsers, simply use the byte-stream ver-
sions, which work just as well. Although I
haven’t discussed these versions much,
they work almost identically to the character
versions from a developer’s perspective
except, of course, the reader/writers accept
character data types versus byte data types.

The Various Stream Classes
Top-Level Classes: java.io.Reader and
java.io.Writer

Reader and Writer are the abstract parent
classes for character stream-based classes in
the java.io package. As discussed above,
Reader classes are used to read 16-bit char-
acter streams and Writer classes are used to
write to 16-bit character streams. The meth-
ods for reading and writing to streams found
in these and their descendant classes (dis-
cussed in the next section) are:

int read()
int read(char cbuf[])
int read(char cbuf[], int offset, int length)
int write(int c)
int write(char cbuf[])
int write(char cbuf[], int offset, int length)

Listing 1 demonstrates how the read and
write methods can be used. The program is
similar to the MS-DOS type and Unix cat com-
mands, that is, it displays the contents of a
file. The following code fragment from Listing
1 opens the input and output streams:

FileReader fr = new FileReader(args[0]);
PrintWriter pw = new PrintWriter(System.out,
true);

The program then reads the input file and
displays its contents till it hits an end of file
condition (-1), as shown here:

while ((read = fr.read(c)) != -1)
pw.write(c, 0, read);

I used the "(char cbuf[])" ver-
sion of the read method, because reading a
single character at a time can be approxi-
mately five times slower than reading chunks
(array) at a time.

Learn the basic concepts here so you can
start programming on your own

by Anil Hemrajani

Programming with Java’s
I/O Streams – Part 1

JAVA PROGRAMMING TECHNIQUES

55VOLUME: 3 ISSUE: 12 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Other notable methods in the top level
classes include skip(int), mark(int), reset(),
available(), ready() and flush().
• skip(), as the name implies, allows you to

skip over characters.
• mark() and reset() provide a bookmarking

feature that allows you to read ahead in a
stream to inspect the upcoming data but
not necessarily process it. Not all streams
support "marking". To deter-
mine whether a stream supports it, use the
markSupported() method.

• InputStream.available() tells you how
many bytes are available to be read before
the next read() will block. Reader.ready()
is similar to the available() method, except
it does not indicate how many characters
are available.

• The flush() method simply writes out any
buffered characters (or bytes) to the desti-
nation (e.g., file, socket).

Specialized Descendant Stream Classes
Several specialized stream classes sub-

class from the Reader and Writer classes to
provide additional functionality. For exam-
ple, the BufferedReader provides not only
buffered reading for efficiency but also meth-
ods such as "readLine()" to read
a line of input.

The class hierarchy shown in Listing 4
portrays a few of the specialized classes
found in the java.io package. This hierarchy
merely demonstrates how stream classes
extend their parent classes (e.g.. LineNum-
berReader) to add more specialized func-
tionality. Tables 1, 2 and 3 provide a more
comprehensive list of the various descen-
dant classes found in the java.io and other
packages, along with a brief description for
each class. These descendant classes are

divided into two categories: those that read
from or write to "data sinks", and
those that perform some sort of processing
on the data (this distinction is merely to
group the classes into two logical sections;
you don’t have to know one way or the other
when using them).

Listings 2 and 3 don’t contain the com-
plete list for the table because I intentionally
skipped the "byte" counterparts
to the "char" based classes and a
few others (please refer to the JDK API refer-
ence guide for a complete list).

Stream Chaining
One of the best features of the I/O stream

classes is that they’re designed to work
together via stream chaining.

Stream chaining is the concept of
"connecting" several stream
classes together to get the data in the form
required. Each class performs a specific
task on the data and forwards it to the
next class in the chain. Stream chaining
can be very handy. For example, in our
own 100% Pure Java backup software,
BackOnline, we chain several stream class-

es to compress, encrypt, transmit, receive
and finally store the data in a remote file.

Figure 1 portrays chaining of three class-
es to convert raw data into compressed and
encrypted data, which is stored in a local file.
The data is written to GZIPOutputStream,
which compresses the input data and sends
it to CryptOutputStream. CryptOutput-
Stream encrypts the data prior to forwarding
it to FileOutputStream, which writes it out to
a file. The result is a file that contains
encrypted and compressed data.

The source for the stream chaining shown
in Figure 1 would look something like the
code seen here:

FileOutputStream fos = new FileOutput-
Stream(“myfile.out”);
CryptOutputStream cos = new CryptOutput-
Stream(fos);
GZIPOutputStream gos = new GZIPOutput-
Stream(bos);

or simply:

GZIPOutputStream gos = new
GZIPOutputStream(new CryptOutputStream(new
FileOutputStream(“myfile.out”)));

To write to chained streams, simply call
the write() method on the outermost class as
shown here:

gos.write('a');

Similarily, when closing chained streams,
you need only to close the outermost stream
class since the close() call is automatically trick-
led through all the chained classes; in our exam-
ple above we would simply call the close()
method on the GZIPOutputStream class.

Summary
In this article we reviewed the basic con-

cepts of Java’s I/O streams, which should give
you a good understanding of how to program
with them. Be sure to tune in next month
when we’ll complete this article by looking at
lots of source code to get a feel for the various
uses of I/O streams such as files, databases,
sockets, archives and much more.

About the Author
Anil Hemrajani is a senior consultant at Divya
Incorporated, a firm specializing in Java/Internet
solutions. He provides consulting services to Fortune
500 companies and is a frequent writer and speaker.
He can be reached at anil@divya.com.

GZIPOutputStream

CryptOutputStream

FileOutputStream

File (Output)

Compressed Data

Compressed and EncryptedData

Data
(Input)

Figure 1: Stream chaining

anil@divya.com

Table 1: Data Sink Streams
CharArrayReader and CharArrayWriter For reading from or writing to character buffers in memory
FileReader and FileWriter For reading from or writing to files
PipedReader and PipedWriter Used to forward the output of one thread as the input to another thread
StringReader and StringWriter For reading from or writing to strings in memory

Table 2: Processing Streams
BufferedReader and BufferedWriter For buffered reading/writing to reduce disk/network access for more efficiency
InputStreamReader and OutputStreamWriter Provide a bridge between byte and character streams.
SequenceInputStream Concatenates multiple input streams.
ObjectInputStream and ObjectOutputStream Use for object serialization.
DataInputStream and DataOutputStream For reading/writing Java native data types.
LineNumberReader For reading while keeping track of the line number.
PushbackReader Allows you to "peek" ahead in a stream by one character.

Table 3: Miscellaneous Streams (java.util.zip package)
CheckedInputStream and CheckedOutputStream For reading/writing and maintaining a checksum for verifying the integrity

of the data.
GZIPInputStream and GZIPOutputStream For reading/writing data using GZIP compression/decompression scheme.
ZipInputStream and ZipOutputStream For reading/writing ZIP archive files.
Stream Chaining One of the best features of the I/O stream classes is that they are designed to

work together via stream chaining.

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

56 • VOLUME: 3 ISSUE: 12 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Why Write Custom Layout
Managers?

Layout manager objectifies the compo-
nent layout strategy. It disentangles com-
ponent layout code from the drawing code
of the container of components. By isolat-
ing the implementation of a layout strategy
in a separate class, a programmer can
reuse it by simply assigning an instance of
this layout class to the container that
requires it. Without a layout manager the
layout code would have to be embedded
within drawing code of the container itself.

Java’s AWT supports this concept in the
LayoutManager interface and supplies five
implementations that are sufficient in most
situations. It’s sometimes more efficient
and effective, however, to implement one’s
own layout manager, designed specifically
for a particular task, rather than struggling
with the standard layout managers.

Let’s say we need to draw components
on a grid, for example, but need to specify
the positions of the components arbitrarily
at any time. On the first take we’d probably
choose AWT’s GridLayout as the layout
manager – that is, until we discover that it
will only position components in sequence.
The programmer then would have no con-
trol over their positions. The alternative
would be to use GridBagLayout, but that’s
way too complicated and difficult to con-
trol for such a simple task. The solution is
to write our own LayoutManager. As you’ll
see, this isn’t as difficult as it sounds and
may be the best solution in many situa-
tions. This article introduces a grid layout
manager with positionable components,
and with flexibility and complexity some-
where between AWT’s GridLayout and
GridBagLayout.

Layout Manager Basics:
LayoutManager Interface

AWT’s LayoutManager interface declares
the following methods that have to be

implemented in a valid layout manager:
• addLayoutComponent
• removeLayoutComponent
• layoutContainer
• minimumLayoutSize
• preferredLayoutSize

AddLayoutComponent and remove-
LayoutComponent let the Container
assigned with this layout add and remove
a Component to and from the layout. Lay-
outContainer implements the layout
strategy, changing the x and y pixel posi-
tion and the dimension of the Compo-
nents as necessary. MinimumLayoutSize
and preferredLayoutSize let the Contain-
er find out the minimum required and
preferred layout size given the Compo-
nents to be laid out in it.

AWT’s Containers are assigned default
LayoutManagers but a different one may be
chosen using the Container’s setLayout
method. When you add a Component to a
Container, the Container will in turn add it

to its assigned LayoutManager. The same
happens when you remove a Component.
Whenever a Component is added or
removed, the Container will call the layout-
Container of the assigned LayoutManager
to update the position and size of all Com-
ponents. If you need to lay out the Contain-
er again, you may invoke the Container’s
doLayout method to recompute the layout.

PositionableGridLayout Class
We call our grid layout with position-

able components the PositionableGridLay-
out class. The minimumLayoutSize for this
case should be the extent of the layout
embodying the outermost component.
That would be our preferredLayoutSize as
well. In other words, minimumLayoutSize
is the x grid position of the easternmost
Component times the width of each grid
and the y grid position of the southernmost
Component times the height of each grid.
This is shown in Listing 1.

LayoutContainer calculates the pixel loca-
tion of each Component given its grid posi-
tion, and relocates it with a call to the Com-
ponent’s setBounds method if necessary.

Note that we did not implement add-
LayoutComponent and removeLayoutCom-
ponent because nothing special needs to
be done when a Component is added to or
removed from the Container.

Listing 2 shows the implementation of
PositionableGridLayout for Java 1.1.

Layout Constraints:
PositionableGridConstraints Class

An automatic LayoutManager – that is,
one that would not allow the programmer
to control the location and size of each
Component – would normally be able to
work alone. For a LayoutManager that
allows the programmer to individually fix
the location and size of the Components,
however, an assisting class is required.
Such is the case with AWT’s GridBagLay-
out, which requires GridBagConstraints to
work. In our example we need to be able to
position any Component at an arbitrary
location at any time. Following the example
of GridBagLayout, we implement an assist-
ing class, the PositionableGridConstraints,
which allows us to specify the grid position
of an added component.

The PositionableGridConstraints class is

JAVA LAYOUT MANAGER

by Daniel Dee

Implementing a Grid
Layout Manager with

Positionable Components
Creating New Layout Managers

for Specific Tasks

Figure 1: Puzzle program

57VOLUME: 3 ISSUE: 12 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

SunTest
www.suntest.com

58 • VOLUME: 3 ISSUE: 12 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

fairly simple to implement. It mainly stores
away the grid position of a Component.

/**
* Constructs a PositionableGridConstraints.
*/
public PositionableGridConstraints(int
gridx, int gridy, …)
{
this.gridx = gridx;
this.gridy = gridy;
:
}

We need to assign the grid constraints
to the Component, of course. Again, follow-
ing the example set by AWT’s GridBagLay-
out, we implement a setConstraints
method in PositionableGridLayout whose
purpose is to associate the grid constraints
to a Component in a hashtable using the
Component as the key, as shown in Listing
3. Listing 4 shows the implementation of
PositionableGridConstraints.

Using the PositionableGridLayout
Class

A good example of the use of the Posi-
tionableGridLayout class would be the
familiar sliding puzzle. Initially, the tiles lie
in a grid. As the user shifts the tiles’ posi-
tion, the application has to change the

coordinate of each piece. Listing 3 shows
the implementation of a simple 3x3 puzzle,
the core of which follows it. Note in Listing
5 the convenience of being able to position
Components by grid position instead of
pixel location.

Conclusion
We’ve shown the use of LayoutManager

beyond the standard AWT-supplied imple-
mentation. We’ve shown how customized
LayoutManager can be a powerful tool for
implementing unique Component layout
strategy for any Container.

In a future article we’ll make use of the
PositionableGridLayout class and the Widget
interface class featured in an earlier issue of
JDJ (Vol. 3, Issue 6) to implement a TreeView-

er widget, a component for laying out trees in
either horizontal or vertical format.

Download Source Code
The program in this article requires the

callback and widget code from the Imple-
menting Callback and Widget-izing AWT
articles published in JDJ (Vol. 3, Issues 4
and 6, respectively). Full source code
(including a complete version of Puzzle)
can be downloaded free from www.wig-
itek.com. A more extensive version sup-
porting programmer-defined Component
size, autoadjustment and alignment for
Java versions 1.0 and 1.1 is also available
from Wigitek Corporation at the same Web
site.

About the Author
Daniel Dee, president of Wigitek Corporation,
holds two MS degrees and has more than 10
years’ working experience in the development of
GUI software toolkits. Daniel has been involved
with Java since its inception. He can be reached at
daniel@excaliber.wigitek.com.

MindQ
www.mindq.com

daniel@excaliber.wigitek.com

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

“A good example
of the use of the

PositionableGridLayout
class would be

the familiar
sliding puzzle.”

59VOLUME: 3 ISSUE: 12 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Microsoft
www.msdn.microsoft.com/visualj

Java’s Dynamic Future Is Happening Now

Until recently, Java reminded me of the
talented kid in school who keeps getting
C’s and B’s instead of A’s. “He’s bright,”
the teacher says, “but he’s not working
up to his potential.” So far, most Java
developers have used this brilliant lan-
guage in a tactical rather than strategic
way. Java has enabled faster, easier, more

flexible programming to develop traditionally structured
applications within a conventional systems model.

The bright kid, though, will soon be earning straight A’s
as developers and IT managers reach beyond Java’s role as
a development tool to discover its far greater value as a
strategic asset.

Without a doubt, the truly exhilarating promise of Java
lies in dynamically structured applications
deployed within a distributed systems
model. Picture a world in which you can
swiftly build distributed apps by reusing
components, no matter what operating
environment they were created for. Imag-
ine calling objects on remote machines
without regard to conflicting ORB stan-
dards. Contemplate building incredibly
cool, distributed applications that deliver
advanced functionality by commanding an
army of mobile autonomous agents –
smart objects that zip around the enter-
prise network fulfilling business missions
on their own. Imagine chopping mainte-
nance chores down to size by extending
objects’ behavior without having to rum-
mage through their source code – in fact,
without even needing it. And think about
making this process so simple that many
end users can perform their own basic
maintenance, making the enterprise more nimble, and free-
ing your IT team to focus on strategically important business
application development and systems design.

These are the hallmarks of a dynamic distributed environ-
ment, one that is built more readily, packed with more
advanced capabilities and modified with stunning speed to
keep pace with ever-changing technologies and business needs.

How long will it be before you can really do all this with
Java? Next year? Three years? Five? Remarkably, Java users
can accomplish it all today.

A powerful new class of Java facilities, already commer-
cially available, renders the entire vision a reality. These
facilities create a layered infrastructure, a platform that
leverages Java’s unprecedented and underutilized ability to
manipulate objects dynamically at runtime.

Many Fortune 500 companies have quietly begun con-
structing enterprise-scale, distributed Java solutions based

on this dynamic platform – ObjectSpace Voyager. Using Voy-
ager, they expect to shorten the application-development
cycle, reduce development costs, make development teams
more productive and give end users more advanced capabil-
ities with which to conduct business.

They are also reducing the time-to-change, making the
enterprise more competitive by modifying system behavior
as quickly as business needs change, on the fly – a crucial
strategic advantage.

That’s not all. Some observers see IT careening toward
another Y2K-like fiasco because many Java applets and appli-
cations are being written with a mix of business logic and
application logic – precisely the programming sin that
brought us the Y2K crisis itself. After all, 750,000 developers
know Java; that number will soon breeze past the million

mark. The sheer volume of Java develop-
ment, combined with today’s competitive
pressures and deadlines, virtually assures
that business logic is being hard-coded
into some Java applets and applications.
As we all know, that will stretch out the
time-to-change. Someone, sometime, will
have to locate each bit of buried business
logic, unzip the source and change the
code – unless a dynamic infrastructure is
in place. With Voyager, for example, a com-
ponent’s behavior can be readily extended
at runtime, even if the source code isn’t
available.

Similarly, distributed systems develop-
ment has long been hindered by the strug-
gle for supremacy among CORBA, RMI and
DCOM, the leading ORB standards, all of
which are incompatible. This recalls the
earliest days of telephone: you couldn’t
place a call to the folks next door if they

subscribed to a competing service.
The dynamic Java paradigm renders this problem as

obsolete as a hand-cranked telephone. How? By enabling
objects to interoperate with all three ORB standards simul-
taneously at runtime. Again, source code is never touched.

There are other benefits, too numerous to mention here. But
one thing is certain: with the advent of a dynamic, distributed
platform, Java is finally ready to earn straight A’s – today.

About the Author
David Norris is the president, CEO and cofounder of ObjectSpace. Prior to
its start in 1992, he worked extensively as an international software consul-
tant, building distributed solutions for large corporations. David holds a
bachelor’s degree in computer science from the University of Texas. To con-
tact him visit www.objectspace.com.

60 • VOLUME: 3 ISSUE: 12 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

by David Norris

Developers and

IT managers

are discovering

the value

of Java as a

strategic asset

www.objectspace.com

I M H O

61VOLUME: 3 ISSUE: 12 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Inprise
www.inprise.com

62 • VOLUME: 3 ISSUE: 12 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Novera Releases jBusiness
4 for Enterprise
Information Integration
(Burlington, MA) – Novera Soft-
ware, Inc., has released jBusi-
ness 4, the company’s newest
version of their information
integration solution. jBusiness
4 intro-
duces the
concept of Enterprise Business
Objects, a standards-based
software component approach
that integrates information
from diverse sources while pro-
viding the scalability and man-
ageability required of enter-
prise applications. With jBusi-
ness 4, customers can use
Enterprise Business Objects to
create new applications that
leverage data from legacy sys-
tems.

jBusiness 4 develop-
ment licenses are
$3,495 per develop-
er. Deployment
licenses start at
$350 per concur-
rent user and
$9,995 per server
per processor.

For more information call
888-Novera1 or visit them at
www.novera.com.

ChemSymphony Beans 1.1
Released
(Oxford, UK) – Cherwell Scien-
tific has released ChemSym-

phony
Beans

1.1, a suite of tools for builders

of intranets with
chemical content. The
toolkit adopts a com-
mon architecture and
has been designed to encour-
age object-oriented approaches
to programming and data man-
agement.

ChemSymphony Beans now
consists of 35 Beans that per-
form the most commonly need-
ed chemical information pro-
cessing tasks.

Computer Associates
Unveils Unicenter TNG
Framework for OS/390
(Islandia, NY) – Computer
Associates International, Inc.,
has unveiled the Unicenter
TNG Framework for OS/390,

adding IBM’s premier enter-
prise server operat-

ing system to the
more than 40
hardware and
software plat-
forms that are
already sup-
ported.

By delivering
the Unicenter TNG Framework
on OS/390, C.A. makes this plat-
form a full and flexible peer in
the enterprise. For the first
time clients can position
OS/390 platforms as manage-
ment hubs in a heterogeneous
environment or manage them
from a distributed environ-
ment.

For more information visit
their Web site at www.cai.com.

Sales Vision Forms
Alliance with Oracle
(Charlotte, NC) – Sales
Vision, Inc., has formed a

strategic alliance with Oracle
to deliver the industry’s first
100% Java, enterprise-class
sales force automation (SFA)
solution using Oracle Lite as its
embedded database.

Sales Vision recently ported
Jsales v. 1.0 to Oracle Lite v.
3.0, Oracle’s thin-client data-
base for Java. The integrated
Jsales/Oracle Lite solution pro-
vides mobile users with secure,
on-demand, remote access to
data residing in Oracle data-
bases. The system runs on any
computing device that sup-

ports Java and doesn’t require
a network connection.

For more information visit
the Sales Vision Web site at
www.salesvision.com.

New Course for Advanced
Java Programmers
(Schaumburg, IL) – Greenbrier
& Russel’s training division
announced the expansion of its
Java curriculum, including
“Advanced Java Program-
ming,” to its series of
courses that provide
the practical business
perspective on the
Java development envi-
ronment.

This four-day, instruc-
tor-led course covers the fol-
lowing topics:
• Advanced Java Core Tech-

nologies
• Programming with Threads
• Network Programming
• JavaBeans
• JFC/Swing
• JDBC

This class is available
nationwide at Greenbrier &
Russel’s training facilities locat-
ed in Arizona, Colorado, Geor-
gia, Illinois, Minnesota, Texas
and Wisconsin.

For more information call
800 453-0357 or visit their Web
site at www.gr.com.

(Berkeley, CA) – Tom Sawyer
Software has announced the
Graph Editor Toolkit for Java.
This 100% Pure Java compo-
nent allows developers to
build Web-enabled high-per-
formance, scalable
diagramming appli-
cations. The Graph
Editor Toolkit for
Java delivers
proven features for
building applica-
tions such as net-
work design, work-
flow and process modeling.
It’s also fully customizable
and optimized for applica-
tions running in distributed

Web environments.
By using the Graph Editor

Toolkit for Java, developers
can efficiently produce appli-
cations that graphically
reveal hidden relationships

and underlying
structures through
ordered diagrams.
These exceptionally
clear user interfaces
enable endusers to
see and address
problems rapidly.
For more informa-

tion call Tom Sawyer Soft-
ware at 510 848-0853, e-mail
info@tomsawyer.com or visit
www.tomsawyer.com.

Graph Editor Toolkit Announced

(Hermosa Beach, CA) – Gefion
Software has released Instant-
Online Technology Preview 1.0,
a preview of a set of new com-
ponents and enhancements to
its InstantOnline Java Servlet
suite.

InstantOnline is an alterna-
tive to proprietary server-side
technologies. Supported on all

major platforms, InstantOnline
Basic 1.0.1 contains compo-
nents for reading information
from a database and
presenting the
result as an
HTML table
or as a free-
form HTML
pattern. They
also store
information
submitted by
Web site visi-
tors in an
HTML form.

The InstantOnline Technol-
ogy Preview 1.0 adds extended
variable handling, debug fea-
tures and enhanced error han-

dling to those components. It
also adds a set of brand new
servlets for file upload and

server-side file manipula-
tion, dynamic Web
forms and for sending

e-mail.
For more infor-

mation visit the
Gefion Software Web

site at www.gefion-
software.com.

New Features
Added to

InstantOnline

63VOLUME: 3 ISSUE: 12 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Object
Management

Group
www.omg.org

64 • VOLUME: 3 ISSUE: 12 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

New JavaBeans
Marketplace for Developers
(Cleveland, OH) - Flashline.-
com, an online retailer of digi-
tal products, has recently
opened an online JavaBeans
marketplace at www.flash-
line.com/Components. This
software component Web store
is devoted entirely to online
sales of JavaBeans and other
components.

Flashline’s intention is to
unite the fragmented compo-
nent market by bringing soft-
ware component buyers and
sellers together and providing
them with modular compo-
nents designed for reuse.

For more information
visit the store on the Web at
www.flashline.com.

Servertec Releases New
Version of iScript

(Kearny, NJ) –
Servertec has
announced the avail-
ability of a new release

of iScript, a platform-
independent scripting
language written
entirely in Java and
used for creating scal-
able server-side,
object-oriented n-tier
enterprise solutions.
The release includes

iScriptServlet, a Java
servlet for directly

accessing iScript from
any Web server
supporting Java
servlets. It also
includes bug fixes

and updated documentation.
For more information visit

the Servertec Web site at
www.servertec.com.

Cloudscape Ships
New Generation of
Embeddable Database
(Oakland, CA) – Cloudscape,
Inc., has shipped the first
embeddable Java database
designed for distributed, dis-
connected and mobile comput-
ing. Cloudscape version 1.5 is
now available and Cloudscape
version 2.0 is currently in beta

with companies such as Cross-
roads Technologies, Endpoint!
and SAIC.

The single-user develop-
ment license is available for
$895 and the single-user
deployment license is available
for $195. Five, 10 and unlimited
user licenses are also available
for up to $6,500.

For more information call
888 59JAVA1, e-mail info@cloud-
scape or visit www.cloud-
scape.com.

Pervasive Software
Announces Pervasive.SQL
for Windows CE
(Austin, TX) – Pervasive Soft-
ware, Inc., has announced Per-
vasive.SQL for Windows CE–
the first high-performance,
multithreaded, embedded data-
base engine for palm PCs and
other smart devices.

Pervasive.SQL for Windows
CE delivers Per-
vasive’s tradi-
tional zero-
administration
capabilities to
the Windows CE
platform, offer-

ing developers the zero-
maintenance features required
in handheld PCs and other
remotely deployed smart
devices.

Pervasive.SQL for Windows
CE is a full-featured, high-per-
formance database engine built
specifically for handheld de-
vices. With a less than 50 K
memory footprint, Perva-
sive.SQL for Windows CE is
designed to deliver optimal
database performance within

the space constraints of the
typical handheld device.

For more information call
800 287-4383, e-mail info@per-
vasive.com or visit www.perva-
sive.com.

Uniscape’s Global Checker
Toolsuite Available
(Redwood Shores, CA) – Uni-
scape has announced the addi-
tion of Global Checker for Java
v. 1.0 to its Global Checker suite
of high-powered code-scanning
tools. Global Checker for Java
1.0 automates the multibyte
enabling process and dramati-
cally reduces the time and
expense of preparing multilin-
gual products for international
markets.

Global Checker first scans C,
C++ and Java-type source files

for any noncompliant codes
under National Language Sup-
port (NLS) standards. It then
suggests solutions through an
extensive online help system.
This enables a developer with
little NLS experience to quickly
scan large C, C++ and Java files,
eliminating tedious manual
checking.

For more information visit
www.uniscape-inc.com.

JDJ Makes Well-Received
Appearance at Oracle
OpenWorld ’98
(San Francisco, CA) – Bonus
copies of JDJ’s last issue, as
well as complimentary sub-

scriptions, were extended to
attendees of Oracle OpenWorld
’98, held last month in San
Francisco.

Java Developer’s Journal
was the only Java-specific
publication at Oracle Open-
World, and was the only publi-
cation officially endorsed by
Oracle.

(Monrovia, CA) – ParaSoft
has announced the
“Ultimate Upgrade
Opportunity” pro-
gram for
Insure++. Users
of competing
products can
upgrade to
Insure++ 4.1
(on Windows
NT/95/98 or
UNIX platforms)
and benefit from an advanced

runtime error detection solu-
tion. Insure++ aims to help
developers produce better
quality code faster and help
managers meet tight release
schedules while staying with-
in budget.

ParaSoft is offering a free,
fully functional
evaluation copy
of Insure++ to
anyone currently
using a compet-
ing debugging
tool. Evaluations
are available
from the ParaSoft
Web site.

For more infor-
mation call 888
305-0041 or visit

www.parasoft.com.

Insure++
Gets “Ultimate

Upgrade
Opportunity”

(Pearl River, NY) -
Michel Gerin,
JBuilder product
manager at Inprise,

has recently become the
newest member of JDJ’s
Editorial Advisory Board. He
takes his place among an
already elite selection of
names within the ever-grow-

ing Java industry.
JDJ’s Editorial Advisory

Board members are Ted
Coombs, Bill Dunlap, David
Gee, Michel Gerin, Arthur
van Hoff, Miko Matsumura,
John Olson, Kim Polese,
Sean Rhody, Rick Ross,
Richard Soley and George
Paolini.

Michel Gerin Joins JDJ Editorial Board

Web
Browser

Web
Server

Page
Server

Database
Server

Application
Server

65VOLUME: 3 ISSUE: 12 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

SYS-CON
Radio

www.SYS-CON.com

66 • VOLUME: 3 ISSUE: 12 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

In this third and final installment of our three-part quest on application server inputs, we
explore the role of distributed objects. (Note the IIOP/DCOM connectivity to distributed objects
in the architecture diagram below.)

There are plenty of good reasons for the application server to require access and communi-
cation with distributed objects outside its own framework. Indeed, the application server is an
ensemble of distributed objects in and of itself, but there may still be external CORBA or COM
objects that the developer wants to integrate into the application.

The purpose of this column is not to debate CORBA versus COM, OMG versus Microsoft or
open standard versus dominant vendor. The bottom line is that both types of objects exist
regardless. Now, you might ask, What will they do?

Many companies have been building and using distributed objects for important business
logic, then housing those objects within Object Request Brokers and distributed object envi-
ronments. At this writing it’s certainly commonplace to find a mission-critical business appli-
cation making use of such
distributed objects. One com-
mon theme in the creation of
CORBA or COM objects is the
need for serious business
logic in a middle tier, particu-
larly when it provides an
abstraction layer for data
stored in legacy systems or
legacy databases. Such dis-
tributed object abstraction
layers are sometimes called
wrappers, but I loathe the
term because it’s often
applied too liberally – as if
anything could be wrapped
this way!

Given the existence of
such wrapper objects and the
multitude of other distinct
types of distributed objects either in CORBA or COM containers, we reach the point where we
must interplay these with the application server. As long as the application server itself is flu-
ent in IIOP and DCOM, we have a place to start. Fluency in IIOP alone could suffice, however,
since there are DCOM bridge products available to extend the IIOP protocol to the Microsoft
realm.

Think of the application server as a community of tightly coupled distributed objects. The
application server makes a bridge so external distributed objects in separate containers (ORBs,
for example) can become first-class citizens of the application server framework. That’s the
trick. Application server vendors such as Progress Software’s Apptivity and BEA’s Weblogic
have efficient mechanisms for making this connection, and the result is a smooth integration
between the application server and the hundreds of CORBA objects that Orfali and Harkey keep
reminding us to build.

So there you have it – a brief look at the three types of connectivity for the application serv-
er: JDBC, legacy systems and distributed objects. For an application server to reach its poten-
tial, these three types must be met with elegance and purpose. It’s not a matter of simply “hav-
ing access” to these types of elements, for Java has access to almost everything through its
APIs. We’re talking about a well-thought-out, integrated approach among tools, framework and
the application server.

Application Servers: Part 3
Enterprise Objects

by Java George

Java George is George Kassabgi, director of
developer relations for Progress Software’s
Apptivity Product Unit. You can e-mail him at
george@apptivity.com.

THE GRIND

“The application

server makes a bridge

so external distributed

objects in separate

containers can become

first-class citizens

of the application

server framework.”

George@sys-con.com

Objects

Client Types
Application Servers

Java

Distributed Objects

Legacy

Data

Objects
Services

CORBA

Adapters

IIOP/DCOM

IIOP

Servlets

Monitor

DHTML

HTML

HTTP

JDBC

Figure 1: Architecture diagram

http://www.JavaDevelopersJournal.com 67Java DEVELOPER’S JournalVOLUME:3 ISSUE:10 •

ObjectSpace
www.objectspace.com

68 Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com• VOLUME: 3 ISSUE: 12 1998

KL Group Inc.
www.klg.com

